Основные LPWAN для беспроводных датчиков

Три основные LPWAN для беспроводных датчиков: LoRa, SigFox и NB-IoT.

LoRa («большой радиус действия») — широко распространенный стандарт, использующий схему модуляции с расширенным спектром для передачи данных на очень большие расстояния. LoRa является основой для LoRaWAN, которая соединяет беспроводные датчики через шлюзы или сетевых коммутаторы LoRaWAN. LoRaWAN имеет более высокую пропускную способность, чем Sigfox, и может более эффективно передавать пакеты данных несмотря на помехи.

С LoRaWAN данные передаются с помощью зашифрованных сообщений между шлюзами и сетевыми серверами. Серверы аутентифицируют и расшифровывают данные, которые в конечном итоге отправляются в платформы управления для их визуализации и анализа. Пользователи могут отправлять команды непосредственно на беспроводные датчики через LoRaWAN для настройки устройств и изменения параметров работы. Это востребовано при использовании платформ по управлению эксплуатацией здания или помещения, например в Индорс Навигейшн.

Датчики LoRaWAN делятся на три группы в зависимости от способности датчика отправлять и получать данные с командами управления. Устройства класса А остаются в спящем режиме до тех пор, пока у них не появятся данные, которые требуется передать. Эти датчики могут отправлять сообщения по исходящему каналу связи в любое время, что делает их особенно полезными в беспроводных сетях с сенсорами и приводами (WSAN).

Основные LPWAN для беспроводных датчиков

Датчики класса B имеют запланированные окна в работе устройства, чтобы получать данные по приходящим каналам связи от серверов. Устройства класса C поддерживают постоянно открытое окно приема данных управления, пока не передают информацию сами. Следовательно, датчики C обеспечивают связь с малой задержкой, но потребляют больше энергии, чем датчики других классов.

С такими типами датчиков LoRaWAN разработчики сетей должны иметь подходящее аппаратное устройство шлюза для получения данных и последующей их передачи на серверы.

SigFox подключает беспроводные датчики напрямую к базовым станциям, используя сверхузкополосную передачу. Стандарт охватывает более 50 стран и может поддерживать более 100 каналов на поддиапазонах со скоростью 500 бит/с. Однако пакеты данных ограничены 12 байтами и не поддерживается ACK команды. Пользователи SigFox платят не только за само устройство, но и за количество исходящих и исходящих сообщений в день.

NB-IoT использует существующую инфраструктуру вышек сотовой связи, чтобы обеспечить обширное покрытие для устройств с низким энергопотреблением. Стандарт использует защитные полосы частот для узких каналов связи, чтобы избежать помех, и может хорошо проходить сквозь стены в помещения. В 2018 году сотовый оператор из США T-Mobile добавила покрытие NB-IoT через свою сеть 4G.

Основные LPWAN для беспроводных датчиков

Что делает беспроводную сенсорную сеть более эффективной?

Есть несколько критических характеристик хорошо спроектированных беспроводных сенсорных сетей.

Во-первых, узлы должны легко обнаруживаться в сети. Обслуживание датчиков, например, замена батарей и обновление по, становится намного проще, когда разработчики знают, где найти все свои устройства.

Во-вторых, сенсорные сети должны выдерживать сбои в узлах без массовых сбоев работы самих датчиков. Топология сети играет большую роль в том, как задачи решаются при подключения. То есть те, кто развертывает беспроводные сети датчиков, должны выбирать топологии, способные функционировать при отказе некоторых компонентов.

В-третьих, сети должны легко масштабироваться. Разработчики должны иметь возможность эффективно развивать свои сети беспроводных датчиков, не вкладывая в расширение значительных средств.

Наконец, при проектировании сети важно учитывать энергопотребление. Используемые беспроводные датчики должны соответствовать требованиям данных платформ IoT. В противном случае сетевые администраторы рискуют потратить много времени и сил на обслуживание и замену.

Основные LPWAN для беспроводных датчиков

Как сегодня используются беспроводные датчики?

Уже есть много реальных примеров того, как технологии сетей беспроводных датчиков используется в различных отраслях и применяется в разных программных решениях по управлению зданием и повышению эффективности при его эксплуатации.  Одним из таких примеров является разработанная компаний Индорс Навигейшн платформа INP — Геолокационная платформа для навигации в помещениях на основе цифрового двойника объекта Indoors Navigation Platform, позволяющая строить маршрут, отслеживать перемещения внутри помещений и собирать аналитическую информацию.

Индустрия безопасности объектов использует технологию беспроводных датчиков во многих своих решениях. С помощью беспроводных датчиков и платформы Индорс Нави, компании могут контролировать свои помещения, выявлять подозрительную активность и отслеживать ценные материальные активы. Банки могут внедрить беспроводные тревожные кнопки для сотрудников, а розничные торговые точки установить беспроводные датчики открытия окон в каждой точке продаж. Жители загородных домов могут использовать беспроводные датчики для обнаружения вредных газов в воздухе, например таких как окись углерода.

Что касается управления коммунальными услугами, беспроводные датчики помогают автоматизировать обмен данными между критически важными системами и минимизировать возникающие неполадки. Например, датчики протечки воды могут быть установлены на стенах для обнаружения поломок сантехники или труб, которые могут лопнуть зимой. Беспроводные датчики протечки используются в серверных помещениях и центрах обработки данных для обнаружения наличия воды и влаги рядом с компьютерным оборудованием.

Беспроводные датчики также применяются в борьбе со стихийными бедствиями. В США, штате Техас, на мостах устанавливаются беспроводные датчики, которые могут определять уровень воды выше определенного порога, что указывает на возможное внезапное наводнение в этом районе. Беспроводные вибро датчики используются на промышленных предприятиях с крупным оборудованием для прогнозирования отказов до их фактического возникновения.

В сфере здравоохранения беспроводные датчики помогают медицинским бригадам контролировать состояние пациентов в режиме реального времени. Беспроводные кнопки служат в качестве устройств персонального вызова в учреждениях по уходу за пожилыми людьми. Датчики влажности помогают руководителям больниц поддерживать условия, способствующие скорейшему выздоравливанию пациентов в больнице.

Основные LPWAN для беспроводных датчиков

Ритейлеры и розничные магазины используют беспроводные датчики чтобы создать положительный потребительский опыт для посетителей. В туалетах устанавливаются беспроводные датчики для того, чтобы посетители могли сообщать когда необходима уборка. Беспроводные датчики температуры воздуха помогают супермаркетам контролировать холодильники и другие выложенные товары.

Это всего лишь несколько примеров того, как беспроводные сети датчиков повышают эффективность и положительно влияют на жизнь людей. Поскольку пространство IoT продолжает развиваться, ожидайте появления новых инновационных платформ по работе с беспроводными датчиками, которые навсегда изменят  современные отрасли.
Подробнее о платформе компании Индорс Навигейшн.

Что такое беспроводные датчики и их эффективность?

Предоставив возможность бытовым приборам обмениваться данными по беспроводной сети, мы можем автоматизировать обмен данными и повысить эффективность из работы, которая положительно повлияет на жизнедеятельность компании.

В основе лежит технология беспроводных датчиков, которая позволяет нам собирать информацию об окружающей среде в течение длительных промежутков времени в автоматическом режиме. Беспроводные датчики можно настроить для измерения множества параметров: от температуры воздуха до вибрации здания. На рынке доступно множество различных типов беспроводных датчиков. 

Многие беспроводные сети содержат сотни, а часто и тысячи беспроводных датчиков. Эти устройства уже используются в самых разных сфе5рах применения: розничная торговля, сельское хозяйство, городское управление, безопасность и оптимизация цепочке поставки товаров.

Давайте в этой статье углубимся в то, как работают беспроводные датчики, и разберем почему они так важны в современном мире.

Что делают беспроводные датчики?

Беспроводные датчики собирают данные о окружающих условиях и передают их в контроллеры систем управления или программные платформами для дальнейшей обработки. Датчики обычно распределены по крупным территориям и запрограммированы для связи с шлюзами и серверами.

Одним из основных преимуществ беспроводных датчиков является то, что они требуют минимального обслуживания и небольшого количества энергии для поддержания работоспособности. Датчики могут поддерживать передачу данных в платформу в течение нескольких лет, прежде чем потребуется замена элементов питания.

Когда дело доходит до создания беспроводных сетей, один из самых больших вопросов с которыми сталкиваются разработчики — это как разместить беспроводные датчики в полевых условиях. Сенсоры должны быть распределены таким образом, чтобы поддерживать главную задачу, выполняемую всей сетью.

Что такое беспроводные датчики и их эффективность?

Как беспроводные датчики объединены в сеть?

Двумя наиболее распространенными схемами объединения в сеть беспроводных датчиков являются топология «звезда» и «сетка».

Топология «сетки» описывает сети, в которых датчики подключаются к как можно большему количеству других близлежащих узлов. В результате данные могут «прыгать» с одного узла на другой без необходимости следовать определенным маршрутам до сервера или через последовательности датчиков. В результате производительности сети не сильно влияете на количество и дальность расположения датчиков, поскольку данные могут идти по нескольким путям к средствам их обработки. Сетчатые структуры сети также легко маcштабируются, поскольку новым датчикам нужно только подключаться к уже существующим узлам.

Топология «звезда» описывает сети, в которых каждый датчик подключается непосредственно к центральному шлюзу или концентратору. Эти концентраторы принимают информацию от датчиков и передают ее на сервер для обработки платформой. Например так устроена работа геоинформационной системы на основе платформы Indoors Navigation Platform. В таких схемах подключения узлы не взаимодействуют напрямую друг с другом.

Что такое беспроводные датчики и их эффективность?

Как беспроводные датчики взаимодействовали ранее?

Существует несколько доступных беспроводных стандартов, которые могут поддерживать сенсорные сети.

До недавнего времени сотовые технологии были наиболее часто используемым вариантом подключения к глобальной сети (WAN). Однако сотовые технологии затратны и потребляют не мало энергии, что не очень подходит для маломощных устройств дальнего действия, например беспроводных датчиков для систем навигации в помещениях.

Помимо сотовых технологий, применяется и Wi-Fi, Bluetooth с низким энергопотреблением (BLE) и Zigbee, которые также могут поддерживать беспроводные сети. Эти стандарты также относятся к категории «традиционных беспроводных решений», но имеют уникальные преимущества и недостатки.

Wi-Fi— одна из наиболее широко используемых сегодня беспроводных технологий в помещениях. Wi-Fi использует диапазоны частот 2,4 ГГц и 5 ГГц. Поскольку Wi-Fi сильно распространен, относительно легко использовать существующие сети для подключения беспроводных датчиков.

Однако сигналы Wi-Fi с трудом проникают через стены, что является недостатком для решений с большим радиусом действия. Так же сети Wi-Fi управляются локальными маршрутизаторами, которые не всегда могут иметь прямые пользовательские интерфейсы для обновления сети датчиков.

BLE — это протокол с низким энергопотреблением, отличный от традиционной технологии Bluetooth. BLE использует полосу частот 2,4 ГГц для передачи небольших объемов информации. Беспроводной стандарт дешевле в использовании чем Wi-Fi, однако те же проблемы возникают, когда речь идет об отправке данных через стены или на большие расстояния. Кроме того, BLE чувствителен к помехам сигнала, поскольку многие другие устройства и стандарты используют полосу частот 2,4 ГГц.

Zigbee — это стандарт беспроводной связи, основанный на ячеистой сети для поддержки большого количества узлов в одной сети. Zigbee лучше всего подходит для беспроводных сенсорных сетей, которым не требуется большая пропускная способность.

Одним из недостатков Zigbee является то, что некоторые датчики должны быть всегда включены, чтобы обмениваться систему информацией для обработки. В результате Zigbee потребляет больше энергии, чем современные ведущие стандарты.

Что такое беспроводные датчики и их эффективность?

Какие стандарты связи регулируют работу беспроводных датчиков?

Хотя традиционные беспроводные стандарты эффективны, уже появился новый класс стандартов, более эффективных для работы беспроводными сетевыми датчиками. Сети с низким энергопотреблением (LPWAN) становятся все более популярной технологией для передачи данных на большие расстояния. LPWAN могут поддерживать миллиарды датчиков и активно использоваться для работы с различными программными платформами по управлению зданием.

LPWAN предлагают несколько преимуществ по сравнению с традиционными стандартами. Во-первых, они потребляют меньше энергии от устройств, поскольку передают информацию со значительно меньшей скоростью передачи данных. Во-вторых, датчики могут работать несколько лет в сетях LPWAN на одном заряде батареи. В-третьих, LPWAN также могут поддерживать работу датчиков на огромных пространствах, поскольку данные могут передаваться на большие расстояния.

Расходы на развертывание беспроводных датчиков в сетях LPWAN ниже, по сравнению с альтернативными решениями. Поскольку скорость передачи данных очень низкая, требования к оборудованию более низкие.

Есть несколько недостатков использования LPWAN. Первый заключается в том, что LPWAN плохо подходят для платформ использующих большие пакеты данных. Беспроводные датчик с передачей больших данных должны использовать сотовые сети или сети Wi-Fi, BLE и Zigbee с высокой пропускной способностью. Второе недостаток в том, что LPWAN используют нелицензированные радиочастоты, которыми сложнее управлять с точки зрения помех.

Подробнее о компании, разработчике платформы для эксплуатации зданий Индорс Навигейшн.

#secondary

Обращение успешно отправлено!