Как внутренняя картография может помочь ориентироваться в офисе

Навигация по большим внутренним офисным помещениям может быть затруднена, особенно в современных больших и сложных зданиях. Если нет правильного способа ориентироваться в большом офисном здании, ваши сотрудники и посетители могут не найти нужное помещение и в конечном итоге потеряют много драгоценного времени. В этой статье компания Indoors Navigation расскажет некоторые конкретные варианты использования карт помещений, которые могут помочь в управлении офисом.

1. Поиск пути

Поиск пути — это метод, который сочетает в себе карты и навигационные указатели, чтобы помочь человеку добраться до определенного места. Навигация использует архитектуру здания и сочетает ее с графическим дизайном, чтобы показать направление движения пользователю из одной точки в другую. Кроме того, это также помогает человеку создать карту здания в уме.

Во многих больших офисных помещениях ориентироваться помогают вывески и статические карты зданий. Знаки, установленные в определенных точках, направляют посетителей к месту назначения.

Однако недавние разработки в области технологий позиционирования способствовали развитию цифрового поиска пути. Существуют внутренние карты, которые в режиме реального времени указывают направление для посетителей вашего офиса и направляют их к конкретным пунктам назначения.

2. Приложения для рабочего места

Картографические решения для помещений теперь представлены в виде мобильных приложений. Используя эти мобильные приложения, например, компании Indoors Navigation, сотрудники могут легко ориентироваться в больших офисных зданиях с указаниями в режиме реального времени. Эти приложения также могут помочь легко бронировать конференц-залы или рабочие места для совместной работы. Мобильные приложения для поиска пути могут пригодиться, чтобы найти конкретных людей, которые не находятся на своих местах в офисе. Это стало возможным благодаря включению в приложение функции обмена местоположением.

Как внутренняя картография может помочь ориентироваться в офисе

3. Безопасность на рабочем месте

Обеспечение безопасности сотрудников в большом офисном помещении — непростая задача. С помощью картографических решений для помещений легко внедрить протоколы охраны здоровья и безопасности.

Оповещения систем сигнализации

Легко внедрить тревожные уведомления в приложения для сотрудников, которые могут их предупредить. Они могут получать уведомления через свои приложения, если они находятся в местах, где звуковая сигнализация не может достичь их слуха. Данная технология позволит им сразу же быстро среагировать в случае экстренной ситуации.

Контактный мониторинг

Картографическое решение для помещений может помочь вашему офису поддерживать протоколы безопасности в постпандемическом мире. Когда сотрудники начинают свою смену на месте, приложение может собирать данные о местоположении сотрудников в помещении, включая расстояние между устройствами. Выполняя сбор данных, приложение может регистрировать все устройства, с которыми контактируют конкретные сотрудники в рабочее время.

Если у какого-либо сотрудника обнаружен положительный результат теста на заболевание, можно пометить устройства, которые были в контакте с этим конкретным сотрудником. Это помогает повысить эффективность работы.

Контроль рабочего места

Картографирование помещений в умных зданиях может помочь улучшить контроль опасных ситуаций. Участки рабочего места, для входа в которые требуется защитное снаряжение, могут быть отмечены. Тогда можно будет ввести и правила пребывания персонала в опасной зоне. Если персонал или материалы, представляющие опасность для жизни, попадают в такое место случайно, сотрудники могут быть уведомлены с помощью предупреждений (например, SMS-уведомлений). Характер уведомлений будет о том, что место запрещено для пребывания в нем до тех пор, пока не будет завершена необходимая уборка.

Карта социального дистанцирования

Протоколы социального дистанцирования легко включить в карты внутренней навигации. Физически это может быть сложнее реализовать. Программное обеспечение можно настроить таким образом, чтобы обеспечить соблюдение ограничений по вместимости помещений. Такая технология может помочь избежать больших собраний во время пандемии. Комнаты могут быть заблокированы удаленно, если количество людей превышает ограничения, а другие могут быть предупреждены с помощью уведомлений. В таком случае, большее количество людей не сможет входить в комнаты и нарушать протоколы социального дистанцирования.

4. Операции по управлению объектами

Картографические решения для помещений могут помочь оптимизировать процессы управления зданием, которые в противном случае отнимали бы очень много времени. Это помогает менеджерам сосредоточиться на основных задачах.

Управление инженерными сетями и объектами

Освещение и HVAC должны быть выключены, когда работа закончена в течение дня, чтобы предотвратить потери электроэнергии. Однако некоторые сотрудники могут захотеть использовать определенные помещения в нерабочее время по разным причинам. Такой процесс можно автоматизировать с помощью программного обеспечения для картографирования помещений. Легко запланировать использование помещений, которые необходимо использовать для сверхурочной работы, а освещение, вентиляция и кондиционирование могут быть выключены в подходящее время. Расписание также может помочь выключить HVAC в неиспользуемых помещениях.

Планирование ресурсов

С помощью универсального картографического решения для помещений легко определить, где разместить аварийную сигнализацию, огнетушители, камеры слежения и аптечки для получения максимальной выгоды. Данные о пользовательском трафике и данные о часто посещаемых местах, доступные через приложение для картографирования помещений, могут быть использованы с пользой.

Планирование офисного пространства

Создание нового офисного помещения для размещения новых сотрудников может стать простой задачей с помощью картографического приложения для помещений. Вы можете планировать строительство новых помещений в соответствии с привычками и требованиями ваших сотрудников, или оптимизировать существующие офисные помещения. Также вы можете перепрофилировать пустующее пространство в полезное офисное пространство с помощью приложения.

Управление воздушным потоком

Управление воздушным потоком важно в контексте пандемии. Настроить HVAC на оптимальную температуру и влажность не составляет труда. Правильное управление воздушным потоком также помогает предотвратить распространение COVID_19 и других вирусов. Приложение можно использовать для имитации различных условий воздуха, чтобы вы могли выбрать оптимальные условия для каждого дня или времени года.

5. Запросы на обслуживание

Эффективно обслуживать основное сервисное оборудование проще, используя картографирование внутри помещений. Сотрудники могут подать заявку на обслуживание, как только узнают, что оборудование нуждается в обслуживании. Руководителям объектов удобнее официально размещать запросы на обслуживание, когда они получают быстрые электронные письма об оборудовании, которое нуждается в обслуживании.

Было замечено, что интеллектуальные решения на рабочем месте положительно влияют на производительность. Добавление новых технологий также может помочь привлечь новобранцев и повысить удовлетворенность сотрудников.

Вывод

Благодаря тому, что физические карты были включены в цифровой формат, платформы динамического картографирования помогают ориентироваться, а также позволяют сотрудникам принимать обоснованные решения о том, в каком месте встретиться и эффективно выполнять свою работу. Однако такие технологии продолжают развиваться в соответствии с современными потребностями и наличием времени и пространства.

Узнать подробнее о наших решениях вы можете на сайте Indoors Navigation.

Также вы можете ознакомится с нашим готовым практическим решением в этой статье: Навигация в офисе Тинькофф.

Мультитехнология: будущее геолокации

Успешная геолокация IoT требует мультитехнологичных решений, которые используют сотовую связь, Bluetooth, LP-GPS, WiFi и другие технологии, уделяя особое внимание LPWAN следующего поколения. В большом мире Интернета вещей отслеживание местоположения — это новый рубеж! Отслеживание местоположения для людей уже является неотъемлемой частью нашей жизни, особенно для навигации. Традиционные технологии, позволяющие это сделать, не только дороги; у них также есть технические ограничения, препятствующие успешному масштабированию. Чтобы геолокации IoT стать реальностью, она должна быть чрезвычайно точной.

Где рынок?

Исследователи рынка и маркетологи прогнозируют, что доходы от «Geo IoT» достигнут 49 миллиардов долларов.

Специалисты в «Обзоре рынка технологий, услуг и приложений«Geo IoT» сообщают, что точно так же, как и определение местоположения стало важным элементом личных коммуникаций, технологии обнаружения присутствия и определения местоположения должны стать ключом к долгосрочному успеху IoT. Они добавляют, что«Geo IoT» и, следовательно, технология геолокации IoT положительно повлияют на многие отрасли.

Соединение объектов IoT уже представляет собой большой рынок, экспоненциально растущий благодаря сочетанию нелицензионных технологий глобальной сети с низким энергопотреблением (LPWAN), таких как LoRaWAN, и сочетанию недавнего внедрения технологий сотового IoT, таких как NB-IoT и LTE-M. Добавление геолокации к этим технологиям вводит целый ряд новых приложений, которые раньше были невозможны. Вот некоторые из этих них:Управление активами

  • Управление автопарком;
  • Прокат противоугонных скутеров или велосипедов;
  • Логистика (отслеживание посылок);
  • Безопасность труда в нефтегазовой отрасли;
  • Уход за пожилыми людьми и инвалидами;
  • Решение для отслеживания лыжников;
  • Домашние животные и их отслеживание.

Вышеупомянутые приложения представляют собой имеющийся большой рынок, который можно захватить только с помощью трекеров с чрезвычайно низкой стоимостью и низким энергопотреблением.

Мультитехнология: будущее геолокации

Проблемы отслеживания активов

Будь то железнодорожные вагоны, прицепы для грузовиков или контейнеры, отслеживание ценных активов в пути является проблемой для многих крупных  организаций, занимающихся логистикой и управлением цепочками поставок. Эти крупные организации обычно полагаются на партнеров, таких как дистрибьюторы, для правильной регистрации событий въезда и выезда.

Процесс регистрации на определенных контрольно-пропускных пунктах обычно выполняется вручную, и подвержен человеческим ошибкам. Чтобы решить эту проблему, маломощная система отслеживания активов IoT, которая использует трекеры маломощной глобальной сети (LPWAN) , предлагает решение для контрольных точек. В частности, трекеры на основе LoRaWAN™ , благодаря малому энергопотреблению, низкой стоимости и легкой стандартизированной инфраструктуре, представляют собой первое, по-настоящему надежное решение для отслеживания, которое позволяет логистическим операторам сократить время простоя во время транспортировки .

В сфере логистики многие бизнес-приложения несут дополнительные расходы из-за неэффективного использования активов. Транспортным компаниям необходимо инвестировать в грузовые вагоны; автомобильным логистическим компаниям необходимо инвестировать в грузовые прицепы; и, конечно же, стандартные контейнеры и поддоны. Однако измерение этого времени простоя также является проблемой. Традиционные решения включают сотовые или спутниковые трекеры, которые требуют значительных капитальных затрат, но, возможно, что более важно, также текущих операционных затрат из-за замены батарей и затрат на подключение. В некоторых случаях трекеры располагаются в труднодоступных местах, особенно если они установлены на железнодорожных вагонах или на нефтяных и газовых буровых установках, что делает замену батарей очень дорогостоящей, особенно если в полевых условиях развернуты сотни тысяч трекеров.

Мультитехнология: будущее геолокации

Трекеры LPWAN: переломный момент

LoRaWAN — это стандарт подключения LPWAN, разработанный LoRa Alliance (в первую очередь для нелицензированного спектра ISM) для изменения как существующих технологий, так и бизнес-моделей.

На технологическом фронте основное влияние LoRaWAN связано с резким снижением энергопотребления. Сокращение использования батареи в конечном итоге влияет на эксплуатационные расходы, связанные с текущим обслуживанием. Это также создает новые возможности для более динамичного отслеживания, поскольку коммуникационные события обходятся дешевле.

Что касается бизнес-модели, логистические компании теперь могут выбирать между «CAPEX» и «OPEX»: большинство систем LPWAN работают в нелицензируемом диапазоне. Например, ведущая технология LoRaWAN™ работает в диапазоне 915 МГц — в США, в диапазоне 868 МГц — в Европе, и в эквивалентных диапазонах ISM — в других странах. Это означает, что логистические компании могут инвестировать в свои собственные беспроводные сети, чтобы сократить или исключить переменные затраты на подключение.

Стоимость сетевых шлюзов LPWAN снизилась в связи с увеличением объемов производства. Теперь они доступны даже для очень небольших логистических центров, таких как автомобильный дистрибьютор.

Трекеры LPWAN следующего поколения

Потенциал отслеживания с поддержкой LPWAN требует аппаратного обеспечения нового поколения. Более низкая радиочастота и более низкое энергопотребление — это лишь часть масштабных усилий по снижению энергопотребления целых систем IoT. Для достижения последнего нам потребуется разработать «мультитехнологическую платформу отслеживания геолокации», которая может сочетать следующее: GPS, L-GPS с низким энергопотреблением, WiFi Sniffing, WiFi-фингерпринтинг и Bluetooth . Цель состоит в том, чтобы снизить общее энергопотребление при своевременном предоставлении информации о местоположении в различные сценарии (например , в помещении или на улице, в городе или сельской местности, медленное или быстрое движение и т. д.).

Другим ключевым моментом такого мультитехнологического решения, в качестве основы для технологии геолокации IoT, является использование технологий LPWAN, таких как LoRaWAN, NB-IoT и LTE-M, для передачи данных геолокации в облачное хранилище. Традиционные технологии сотовой связи, такие как 2G/3G/4G, слишком энергетически затратны, чтобы обеспечить 5-10-летний срок службы батареи. Тем не менее, будут лицензированы варианты Cellular IoT на основе NB-IoT/LTE-M, которые также будут использоваться для некоторых приложений.

Actility утверждает: «Объединение сетевого решения IoT, такого как LoRaWAN, с многорежимной технологией геолокации IoT для наружного и внутреннего позиционирования увеличит срок службы батареи как минимум в десять раз больше, чем стандартное сотовое решение с использованием GSM/AGPS».

Будущее мультитехнологий для геолокации

Будущее технологии геолокации IoT требует приверженности надежному развитию нескольких технологий. Нам потребуются мультитехнологические облачные платформы, которые будут разумно сочетать технологии геолокации Over-The-Top (OTT), такие как: GPS, GPS с низким энергопотреблением, Wi-Fi и Bluetooth, с сетевыми технологиями геолокации TDoA с использованием LoRaWAN. Такие инновации требуют тесного сотрудничества между операторами сетей общего пользования и поставщиками услуг геолокации.

Чтобы узнать больше о том, как мультитехнологии могут расширить возможности решений геолокации IoT нового поколения, вы можете ознакомиться со всеми технологиями на сайте Indoors Navigation.

10 лучших прогнозов для Wi-Fi в 2023 году

1. Wi-Fi 6/6E продолжается

Всего за два года экосистема Wi-Fi 6 выросла до 500 миллионов устройств и стала самым быстрым и успешным запуском в истории Wi-Fi. Нет никаких сомнений в том, что Wi-Fi 6 обеспечивает значительные улучшения KPI, особенно высокую пропускную способность, уменьшенную задержку и лучшую производительность в многолюдных средах.

Широкое внедрение Wi-Fi 6/6E будет продолжаться, несмотря на неблагоприятную экономическую ситуацию, обусловленную многими особенностями стандарта и его возможностью доступа к дополнительному спектру в диапазоне 6 ГГц через расширение 6E. На сегодняшний день 55 стран, в том числе страны ЕС, открыли (по крайней мере, частично) полосу 6 ГГц для нелицензионного использования, и еще шесть стран в настоящее время рассматривают этот вопрос. Кроме того, страны, которые уже утвердили 6 ГГц, рассматривают возможность расширения полосы на весь диапазон.

Огромный рост объемного видеотрафика накладывает новую нагрузку на возможности, необходимые для коммерческой сети Wi-Fi. Данный рост будет стимулировать инвестиции в новые технологии. Развертывание оптоволоконной широкополосной связи будет продолжать расширяться на большинстве развивающихся рынков, создавая потребность в обновлении домашних сетей Wi-Fi, чтобы передавать увеличенную полосу пропускания на все устройства.

10 лучших прогнозов для Wi-Fi в 2023 году

2. Wi-Fi 7 раньше, чем ожидалось

Стандарт Wi-Fi 7 предназначен для использования всей недавно доступной полосы пропускания с функциями, включая каналы шириной 320 МГц, настоящую многодиапазонную/многорадиочастотную агрегацию несущих уровня 2 и координацию нескольких точек доступа. Что касается графика ввода, IEEE ожидает одобрения советом директоров к маю 2024 года, а официальные стандартизированные устройства Wi-Fi 7 появятся на рынке с 2025 года. Чипсеты для Wi-Fi 7 уже доступны в течение нескольких месяцев, и маршрутизаторы будут продолжать выпускаться в течение 2023 года после выпусков «TP-Link», «H3C» и «IO by HFCL» 2022 года. Мы также можем ожидать, что телефоны с Wi-Fi 7 будут представлены на «Всемирном мобильном конгрессе» («Mobile World Congress») в конце февраля 2023 года. В 2023 году мы увидим первые испытания Wi-Fi 7 в различных средах развертывания в реальном времени.

3. Проблемы с цепочкой поставок

Мы по-прежнему ожидаем, что проблемы с цепочками поставок для точек доступа и коммутаторов, возникшие во время пандемии, останутся с более короткими задержками. Глобальные политические волнения, нехватка сырья и рост цен на топливо и энергию являются основными причинами, по которым проблемы с цепочками поставок сохранятся в 2023 году. Недавние блокировки в Китае также будут способствовать сохранению неопределенности в цепочке поставок ИТ. Несмотря на эти проблемы, отставание сократится с 5–6 месяцев до 2–3 месяцев, а к концу 2023 года — до 6 недель — если не произойдет новых крупных событий, которые снова нарушат цепочку поставок.

4. OpenRoamingMomentum

Для инициативы «OpenRoaming» от «Wireless Broadband Alliance» (WBA) 2022 год был удачным. К декабрю 2023 года WBA ожидает, что «OpenRoaming» достигнет 5-6 миллионов точек доступа (с 1 миллиона в первом квартале 2022 года), охватывающих самые разные общественные места и уже охватывающих 2000 компаний. Количество развертываний «Passpoint»/«OpenRoaming» продолжает расти, поскольку все больше брендов и поставщиков удостоверений признают ценность федерации для обеспечения беспрепятственного подключения к различным сетям.

Основным препятствием для внедрения «Passpoint» или «OpenRoaming» будет постоянная нехватка ИТ-ресурсов в этих организациях. Что касается технической стороны, WBA выпустит версию 4, которая будет включать федеративную службу адаптации (управление профилями и интерфейсы), сетевое качество обслуживания (QoS) в режиме реального времени, настраиваемые соглашения об уровне обслуживания, службу членства (аналитика и отчетность), инструменты и автоматизацию соответствия, а также «Capport» (собственный портал).

5. TIP OpenWiFi

Поскольку «Meta» (Meta Platforms, Inc) сокращает около 13% своей рабочей силы и отказывается от подключения, краткосрочное влияние на дорожную карту TIP «OpenWiFi», вероятно, будет отрицательным. Но в долгосрочной перспективе остальная часть сообщества будет играть более активную роль. У TIP «OpenWiFi» новый лидер: Джек Рейнор из «Meta», который сказал: «Meta продолжает поддерживать «OpenWiFi» и помогает проекту перейти к сообществу. Из-за этого, а также из-за того, что все основные ресурсы для разработки и тестирования остаются выделенными, «OpenWiFi» не потеряет ни шагу с точки зрения выпуска кода и тестирования». Хотя остается много вопросов об уровне поддержки, которую «Meta» продолжит предоставлять, тестирование и исследования все еще продолжаются.

В 2023 году TIP «OpenWiFi» сосредоточит свои исследования и разработки на ряде областей, таких как производственное развертывание существующих устройств «OpenWiFI» 6E, интеграция «OpenAFC», поддержка BLE/IoT для новых интерфейсов «Matter» и многое другое. В настоящее время на разных этапах находятся 35 текущих клиентских испытаний, и ожидается, что некоторые из них превратятся в крупные коммерческие развертывания в первом квартале 2023 года. Проблемы с цепочкой поставок от традиционных поставщиков точек доступа представляют собой еще один стимул для поставщиков совместимых точек доступа TIP «OpenWiFi».

6. AFC

Решение для базы данных спектра, «автоматический координатор частоты» (AFC), требуется для наружных и мощных внутренних приложений с частотой 6 ГГц. Принятие диапазона 6 ГГц для нелицензионного использования будет продолжать расти во всем мире, и все больше регуляторов будут инициировать свои  процессы AFC. На момент написания Федеральная комиссия по связи уже утвердила 13 организаций для эксплуатации услуг AFC, а количество имеющихся в продаже устройств с поддержкой Wi-Fi-6E достигло 1095. Мы ожидаем, что AFC продолжит набирать обороты в 2023 году, когда появится гораздо больше точек доступа и устройств, поддерживающих 6E. Ожидается, что регулирующие органы в некоторых странах, таких как США и, возможно, Канада, одобрят первых операторов AFC, и первые несколько стандартных точек доступа к электропитанию поступят на рынок.

Другие страны, такие как Бразилия и Европа, продолжат разработку нормативных правил для работы системы AFC. «OpenAFC» Software Group — это специализированное сообщество с открытым исходным кодом для проектирования, разработки, тестирования и возможной сертификации программного обеспечения AFC для нелицензионных услуг.

7. Конвергенция между Wi-Fi и 5G

Конвергенция и сосуществование всегда в центре нашего внимания, поскольку появляются варианты использования, которые оптимально работают с несколькими типами подключения. Конвергенция лицензионных и нелицензионных технологий будет продолжать играть решающую роль в текущих и будущих стратегиях поставщиков услуг. Существует особое соглашение, по которому особое внимание уделяется конвергенции в корпоративных условиях, где многие заинтересованные стороны считают, что Wi-Fi и 5G будут сосуществовать для обеспечения повышенной гибкости корпоративных услуг.

В 2023 году продолжится развертывание Wi-Fi 6 и 6E в корпоративных кампусах, а также будет реализовано больше пилотных проектов в промышленных средах в сочетании с некоторыми частными сетями 5G. Wi-Fi 6/6E и OpenRoaming вместе с QoS и политиками «ATSSS» откроют возможности для дальнейшей конвергенции «HetNet» от операторов с 5G, частной сотовой связью и Wi-Fi .

8. HaLow

«HaLow» — это технология, использующая стандарт IEEE 802.11ah.» Wi-Fi Alliance» называет его «Wi-Fi HaLow». Преимущество «HaLow» заключается в том, что он работает в диапазоне радиочастот ниже 1 ГГц (902–926 МГц), что намного ниже, чем у традиционного Wi-Fi (2,4 ГГц), и использует более узкие каналы, чем традиционный Wi-Fi.

«WiFi Alliance» сертифицировал стандарт Wi-Fi «HaLow» только в октябре 2021 года, несмотря на то, что к тому времени технология находилась в разработке уже шесть лет. В настоящее время чипы «HaLow» предлагают «Morse Micro», «Newracom» и «Taixan Semiconductor». «Morse Micro» получила 140 млн австралийских долларов (94,4 млн долларов США) в рамках финансирования серии «B», что должно дать ей столь необходимый финансовый импульс на очень конкурентном рынке беспроводной связи IoT. «HaLow» лучше подходит для использования в помещениях (умных домах) и, возможно, для покрытия кампусов, где другие виды Wi-Fi уже хорошо укоренились. Еще неизвестно, сможет ли он бросить вызов этим протоколам LPWAN для наружных приложений, требующих только низких скоростей передачи данных, таких как интеллектуальные измерения и мониторинг окружающей среды.

9. Метавселенная

Учитывая, что большая часть метавселенной будет происходить внутри помещений , Wi-Fi будет играть важную роль, подчеркивая важность спектра 6 ГГц и стимулируя спрос на Wi-Fi 6E, Wi-Fi 7 и выше. Для метавселенной требуется предсказуемый и стабильный низкий уровень задержки, низкое дрожание и очень высокая пропускная способность каналов для поддержки рендеринга как на локальном, так и на беспроводном уровнях — возможности, которые предоставляет Wi-Fi следующего поколения. Различные аналитики предсказывают, что 2030 год станет годом метавселенной. Нет сомнений в том, что в 2023 году все больше операторов сформулируют стратегию метавселенной, а устройства и приложения AR/VR продолжат проникать в нашу повседневную жизнь.

10 лучших прогнозов для Wi-Fi в 2023 году

10. Монетизация Wi-Fi

Весь трафик данных и инновации должны быть эффективно монетизированы. В последние годы все больше операторов преуспевают в применении нескольких стратегий монетизации, основанных на одних и тех же сетях и потоках трафика. Тремя основными стратегиями монетизации, которые будут заметны в наступающем году, будут маркетинг и аналитика, услуги по разгрузке сотового трафика и услуги на основе определения местоположения. Однако доступность устройств и интеграция с лицензированными частотными сетями останутся основными барьерами.

Подробнее о технологиях вы можете ознакомится на нашем сайте.

Внутренняя навигация с использованием GPS – возможно ли это?

В современном мире невозможно представить путешествие без GPS — он везде. Мы сильно полагаемся на глобальную систему позиционирования, чтобы перемещаться в разные места. Поездка на работу, ходьба, вождение автомобиля и открытие новых мест стали невероятно легкими с появлением GPS.

GPS существует уже давно и произвел революцию в передвижении объектов; поскольку он используется для навигации, отслеживания, определения местоположения, картографирования и хронометража как военными, так и гражданскими лицами. Мы настолько зависим от GPS, что без него можем чувствовать себя потерянными.Однако, когда вы входите в помещение, например, в здание или жилой комплекс, производительность GPS снижается.

GPS и внутренняя навигация

Когда вы входите в какое-либо здание, GPS может стать досадно бесполезным. Несколько коротких шагов в здание могут превратить даже самых уверенных навигаторов в нервных путешественников, ищущих направление. Не имея выбора, большинство из нас принимают это как часть своей жизни, откладывают телефоны в сторону и полагаются на более традиционные методы ориентирования: поиск указателей над головой, выполнение письменных указаний или обращение за помощью.

Наши существующие внутренние навигационные системы оставляют желать лучшего, особенно по сравнению с их внешними аналогами. GPS — это технологическое чудо, но он редко работает в помещении, что понятно, учитывая, что сигналы GPS передаются спутниками, вращающимися вокруг Земли. Эти сигналы должны проходить через небо, туман, дождь и растительность, а не через кирпичи, камень и бетон.

В таком случае, как мы будем ориентироваться в помещении?

Что ж, теперь, когда мы установили, что GPS довольно плохо работает внутри зданий, нам стала нужна технология, которая позволит ориентироваться и находить путь сквозь сложную архитектуру с той же легкостью, с какой Google Maps обеспечивает нас снаружи. Но существует ли такая технология?

В решениях недостатка нет — от маяков Bluetooth до геомагнитных сигналов — существует множество вариантов для рассмотрения. Настоящий GPS-навигатор для помещений должен обеспечивать бесперебойную работу пользователей, практически не требуя усилий с их стороны и не требуя от них посещения местоположения перед попыткой навигации по нему. Любое решение, которое не дает такого опыта, почти наверняка исчезнет в безвестности.

Представьте, что вы никогда не заблудитесь в супермаркете, пытаясь найти овощной отдел. Представьте себе, что вы успеете на рейс в последнюю минуту и избежите хлопот, связанных с прибытием на неправильную сторону аэропорта. Блаженство, не так ли? Внутренний GPS должен быть в состоянии достичь именно этого.

Возможности действительно безграничны, и они, несомненно, облегчат нашу жизнь как отдельных людей. Такие решения могут быть намного полезнее для бизнеса. Одним нажатием кнопки бизнес-лидеры могли бы мгновенно и правильно отслеживать все ключевые активы. Они могли бы действительно сократить время, затрачиваемое на поиск оборудования.Технический персонал мог бы быстро и просто находить вход и выход из незнакомых зданий, в то время как компании могли бы оценивать модели потребительского трафика, чтобы предоставить покупателям уникальный и оптимизированный процесс совершения покупок. Не говоря уже о пожарных, для которых знание точного местонахождения застрявшего человека может означать разницу между жизнью и смертью.

Внутренняя навигация с использованием GPS – возможно ли это?

Но как мы внедрим бесшовную внутреннюю систему GPS?

Давайте рассмотрим некоторые варианты.

Внутренняя система позиционирования относится к технологии, которая помогает определять местоположение людей и объектов в помещении, аналогично GPS для внешних ситуаций. Чтобы сделать информацию полезной, информация о местоположении предоставляется прикладной программе некоторого типа. Например, системы определения местоположения в реальном времени (RTLS), навигация, управление запасами и системы быстрого реагирования — все это поддерживается технологиями IPS. Давайте посмотрим, как мы можем этого добиться.

Позиционирование Bluetooth-маяка

Использование Bluetooth-маяков с батарейным питанием является хорошо известным методом навигации. Сигналы маяков, установленных внутри здания, обычно могут использоваться смартфоном для определения местоположения устройства. Программа предоставляет пользователю вытянутый навигационный маршрут на основе позиционной и навигационной информации, полученной от маяков.

Сверхширокополосные системы

По сравнению с другими альтернативными методами, сверхширокополосный, или «UWB», без сомнения, является наиболее точным методом определения местоположения внутри помещений. Однако это связано с дополнительными аппаратными потребностями и затратами. Для сверхширокополосных систем требуется размещение якорей UWB на расстоянии до 50 метров друг от друга и прикрепление метки местоположения UWB к отслеживаемому объекту. Якоря используют импульсы радиосигнала в диапазоне от 3 до 7 ГГц для определения местоположения метки UWB с точностью до 30 см в 2D-пространстве, и их местоположение обновляется каждые 50 миллисекунд.

Системы на базе Wi-Fi

Маяки Wi-Fi можно использовать так же, как маяки BLE. Однако, они требуют внешнего источника питания и дороже в установке и обслуживании. Поскольку они используют измерения разницы во времени прибытия (TDOA) с широкой полосой пропускания, системы внутреннего позиционирования Wi-Fi имеют довольно высокий уровень точности — от трех до пяти метров.

Акселерометры и гироскопы

Гироскоп — это устройство, использующее принципы сохранения углового момента для измерения или поддержания ориентации. В большинстве мобильных телефонов есть гироскоп и компас. Такая информация, в дополнение к другим обсуждаемым технологиям, может использоваться устройством для обеспечения еще более точного определения местоположения.

Вывод

Приведенные выше технологии можно использовать вместе, чтобы создать абсолютно бесшовную систему внутреннего GPS. Таким образом, обычный GPS может быть не лучшим вариантом для навигации в помещении. Но независимо от того, какая технология внутреннего позиционирования окажется на верхушке рынка в ближайшие годы, одно можно сказать наверняка: внутренний GPS — это пузырь, который вот-вот лопнет, и только время покажет, где и как.

Подробнее о всех технологиях вы можете ознакомится на нашем сайте Indoors Navigation.

Домофон — от слуховых трубок до IoT

Мир сильно изменился с тех пор, как более 100 лет назад был изобретен первый домофон . В то время жители многоквартирных домов покупали товары на рынке в шаговой доступности от дома, ездили только по особым случаям и редко беспокоились о том, что к ним заглянет нежданный гость. Сегодня они покупают в Интернете все, от зубной пасты до кроватей, путешествуют по всему миру и т.д.

По мере того как менялся образ жизни людей, менялись и окружающие их инструменты и технологии. Сегодняшняя видеодомофонная система для квартир теперь включает в себя наборы инструментов и функций, которые многие из нас используют, но редко задумываются.

Рождение домофона

Первый домофон существовал в виде трубок, которые акустически передавали звуки на расстояние до 300 футов. Вы можете говорить в один конец, и человек на другом конце вас услышит. В детстве вы когда-нибудь разговаривали со своим соседом, соединяя две банки веревкой? Первый домофон был примерно таким. Он работал, перенося вибрации, которые распространяются в виде акустической волны через воздух в трубке. Наш мозг интерпретирует эти вибрации как звуки. Такие трубки были ограничены расстоянием, которое эти волны могли пройти, прежде чем рассеяться естественным путем. Кроме того, установка труб для передачи звуковых волн от входа в здание к каждому блоку была громоздкой и дорогой.

Первый телефонный домофон был запатентован в 1894 году компанией «Kellogg Switchboard and Supply Company» . Срабатывал домофон, когда посетитель дергал за ручку на панели у входа в здание, что замыкало цепь (или реле), пропуская электрический ток по проводке к приемнику в квартире арендатора. Приемник издавал жужжащий звук, предупреждая жителей о посетителях.

К сожалению, это устройство не позволяло жителям разговаривать со своими посетителями. Вместо этого они должны были пойти посмотреть, кто им позвонил, прежде чем предоставить доступ в здание. Хотя это была не самая удобная система, она была дешевле и эффективнее, чем установка труб по всему дому и ожидание, что посетитель будет кричать в нее. Несколько лет спустя компания Kellogg добавила наушник и мундштук, чтобы жильцы могли разговаривать с посетителями.


 В 1947 году изобретение транзистора — устройства, которое усиливает или коммутирует электронные сигналы — еще больше продвинуло технологическую ДНК внутренней связи. Производители начали создавать системы внутренней связи с твердотельными реле. Это означало, что не было никаких движущихся частей, которые могли бы изнашиваться со временем.

Видеодомофоны

Перенесемся в 1980-е годы, когда появились видеодомофоны.

Для систем видеодомофона требуется оборудование, оснащенное камерой и экраном, соединенное проводкой по всему зданию. Хотя это может показаться простым — посетитель нажимает кнопку, чтобы вызвать жителя, который включает видеокамеру и выводит изображение на экран — технологии пришлось пройти долгий путь от реле и транзисторов до программного обеспечения и пикселей.

Однако большинство современных систем видеодомофона по-прежнему позволяют совершать локальные видеовызовы. Это связано с тем, что технология, необходимая для передачи видео на удаленное устройство, является дорогой и сложной. Таким образом, многие из сегодняшних жителей с системами видеодомофона могут видеть посетителей только тогда, когда они физически находятся в своих квартирах.

Домофон - от слуховых трубок до IoT

Шифрование

С изобретением беспроводной связи, и интегрированием ее в домофоны, появился ряд проблем. В большинстве случаев вопросы конфиденциальности остаются защищенными в проводной системе внутренней связи. Хотя могут быть прослушки, врезка жучков и так далее. Такие проблемы носят общий характер. С другой стороны, вопросы конфиденциальности являются основной проблемой (проблемами) службы беспроводной внутренней связи. Основная проблема здесь заключается в шифровании.

Вероятно, лучшим способом избежать этого препятствия в значительной степени было бы не использовать общедоступные частоты.

В современных беспроводных домофонах для дома и общего пользования частота связи установлена ​​на уровне 4 кГц. Это действительно снижает четкость и качество голоса в определенных ситуациях.

Поскольку эти системы являются беспроводными, они остаются наиболее безопасным и конфиденциальным способом связи. Риск снижается за счет дополнительных преимуществ шифрования. Эти системы страдают от помех в сигналах. Эти системы перспективны в медицинских центрах и больницах, требующих постоянного наблюдения за пациентами.

Современный домофон

Сегодняшний домофон выходит за рамки традиционного видеодомофона. Он позволяет открывать двери и управлять доступом к собственности со смартфона. Прошли те времена, когда вы должны были находиться в своей квартире, чтобы предоставить доступ своим посетителям.

Первый интеллектуальный видеодомофон был представлен в 2014 году, построенный на основе устройства, которое уже есть у каждого в кармане — смартфона. Решение позволяет устранять необходимость в дорогостоящей проводке здания и встроенном оборудовании, которые поставляются с другими системами внутренней связи в квартирах. Более того, здания, оборудованные интеллектуальным видеодомофоном, дают жильцам, посетителям и персоналу больше контроля над тем, кому они разрешают и ограничивают доступ.

Домофон включает в себя функции, ориентированные как на безопасность, так и на удобство, такие как:

  • Удаленный доступ . Вы можете открыть свою дверь для посетителя, независимо от того, находитесь ли вы в другом городе или в другой стране.
  • Одно- и двусторонние видеозвонки. Вы можете видеть, кто находится у вашей двери, и общаться с ними в видеочате, как в FaceTime.
  • Мобильный доступ . Вы можете открыть дверь для себя прямо со своего смартфона.
  • Доступ к контактам для входа в здание, когда у вас нет смартфона под рукой.
  • Виртуальные ключи , которые представляют собой QR-коды, которые вы можете отправить посетителям заранее и отозвать в любое время.
  • PIN-коды доставки , которые вы назначаете курьерам для беспрепятственного и контролируемого доступа
  • Журналы аудита , включая фотографии с отметками времени и даты каждого посетителя, вошедшего на территорию.

Ознакомится с технологиями IoT можно на нашем сайте Indoors Navigation.

Триангуляция LTE для отслеживания объектов внутри помещений

LTE — это эффективное решение для отслеживания активов внутри помещений, когда надежность важна, но точность не является основным требованием.

Что такое LTE?

Под LTE подразумевается «долгосрочное развитие». LTE относится к стандартизированному пути, установленному 3GPP для коммуникационных компаний для обновления их мобильных сетей с 3G (3-го поколения) до 4G (4-го поколения). Из-за высоких стандартов, установленных для сети 4G, многие компании продают LTE или 4G LTE, чтобы показать, что их сети движутся к 4G или близки к нему, но еще не достигли строгих минимальных требований.

Как работает триангуляция LTE?

Есть несколько фрагментов данных, используемых в расчетах триангуляции, которые можно получить от вышек сотовой связи. Во-первых, мощность сигнала, которая используется для расчета расстояния устройства от вышки сотовой связи, во-вторых, угол наклона. Вышки сотовой связи имеют несколько антенн, которые отправляют и принимают сигналы, что позволяет узнать направление устройства относительно вышки сотовой связи. Третьей частью информации, используемой при расчете триангуляции, является местоположение самой башни. Объединив эти три фрагмента информации с нескольких вышек сотовой связи, вы можете определить положение IoT-устройства.

Триангуляция LTE использовалась много лет, особенно до появления GPS. Основное приложение заключалось в том, чтобы операторы могли определить приблизительное местонахождение экстренного вызова службы спасения. Другие приложения включают уточнение местоположения в помещении, когда GPS не находится в прямой видимости с устройством.

Преимущества

LTE дает несколько преимуществ. Первым преимуществом является большой объем инфраструктуры LTE, которую можно подключить и использовать. Вторым преимуществом является большое расстояние, на которое может распространяться сигнал. Эти два преимущества обеспечивают большую гибкость. Вы можете прикрепить сотовую антенну к объекту, подключить ее к сотовой сети и начать отслеживать объект. 

Недостатки

Основным недостатком триангуляции LTE является ее неточность. Точность триангуляции LTE колеблется от десятков метров до нескольких сотен метров. Это происходит из-за больших различий в мощности сигнала в силу помех и больших углов, которые охватывают антенны сотовой связи. В помещении точность LTE не будет такой высокой, как у других вариантов подключения, зависящих от мощности сигнала, таких как Wi-Fi или  Bluetooth.

Приложение

В настоящее время LTE обычно используется в качестве запасного варианта, когда другие технологии не эффективны. Например, ваш телефон прибегает к триангуляции LTE, когда не может определить точное положение с помощью GPS. Другое приложение включает в себя отслеживание пакета от отправителя до получателя. Посылка пройдет через склады и многие виды транспорта, прежде чем попадет к вам. LTE может эффективно отслеживать его на всем пути. LTE — эффективное решение, когда надежность имеет решающее значение, но точность не является основным требованием.

Узнать другие способы позиционирования в помещениях вы можете на сайте Indoors Navigation.

Ультразвуковое позиционирование в помещениях

Ультразвуковая технология позволяет определять звуковые волны с высокими частотами, не воспринимаемыми человеческим ухом, обычно свыше 20 килогерц (кГц). Этот метод ультрозвукового позиционирования нашел свое применение в природе, например, летучие мыши используют его для эхолокации. В разделенных на отдельные комнаты помещениях, таких как больницы или гостиницы, ультразвук может быть эффективным, но для широких открытых пространств требуются дальнейшие исследования и испытания.

В данной статье мы представим обзор ультразвуковых технологий позиционирования и отслеживания внутри помещений. Коммерческие решения в области ультразвукового слежения обещают точное определение объектов с точностью до нескольких сантиметров, возможно, даже на уровне комнаты. Активные исследования по использованию ультразвука для полноценной навигации в помещениях уже показали многообещающие результаты, и предстоящий коммерческий релиз направлен на превращение этого потенциала в реальность.

В интернете сейчас можно найти множество официальных документов и исследовательских презентаций, посвященных ультразвуку. Отделение потенциальных применений этой технологии от уже проверенных развертываний может быть сложной задачей. В данной статье мы постараемся разъяснить некоторые неясности, предоставив обзор ультразвука в целом, принципов его работы в отслеживании и возможности использования текущих доступных решений в комплексной системе навигации внутри помещений.

Использование ультразвука для навигации внутри помещений стало обычной практикой. Ультразвуковое позиционирование позволяет определить расстояние до объектов и создать детальную карту окружающего пространства. Такой подход нашел свое применение в различных сферах, включая робототехнику, системы безопасности и умный дом. Ультразвуковые сенсоры способны точно измерять расстояния и помогать устройствам ориентироваться внутри помещений, обеспечивая надежную навигацию.

Что такое ультразвук?

Ультразвук представляет собой спектр звуковых волн с частотами, выше предела восприятия человека, обычно свыше 20 килогерц (кГц). Это явление природы, широко используемое для определения местоположения и навигации. В этой статье мы рассмотрим примеры использования ультразвука в природе и его значимость для навигации внутри помещений.

Летучие мыши известны своим использованием эхолокации для обнаружения насекомых. Они излучают ультразвуковые импульсы с частотой до 200 кГц и могут воспринимать крайне тонкие различия (до 0,0001 кГц). Китообразные и некоторые рыбы также используют ультразвук для навигации, охоты и общения. На суше собаки и кошки обладают чувствительностью к ультразвуковому спектру, а землеройки могут использовать ультразвук для обнаружения объектов сквозь траву и мох.

ультразвуковая навигация в помещениях

Исследования биомимикрии: от животных к технологиям навигации в помещениях

На протяжении десятилетий исследователи задавались вопросом, можно ли превратить биологический успех животных в технологический успех. Различные проекты, такие как Active Bat, Cricket и DOLPHIN, черпали вдохновение из животного мира, в особенности из животных, использующих эхолокацию. Они основывались на принципе измерения времени пролета (ToF) ультразвуковых сигналов от передатчиков к приемникам для определения точного местоположения объектов с точностью до нескольких сантиметров с помощью трилатерации.

Active Bat: расширение зоны покрытия

Система Active Bat использует два передатчика, чтобы увеличить зону покрытия. Потолочные приемники прослушивают ультразвуковые импульсы и передают данные в центральную систему, которая, основываясь на мультилатерации с использованием трех или более приемников, определяет положение передатчика с точностью до 3 см. Но такая система требует большого количества приемников, размещенных под определенными углами, что делает ее дорогостоящей для масштабного применения.

DOLPHIN: улучшение Active Bat

Проект DOLPHIN улучшает систему Active Bat, требуя известные местоположения только нескольких сенсорных узлов. Другие датчики определяют свое положение относительно этих узлов, упрощая систему и снижая затраты.

Cricket: обратный подход

Система Cricket, разработанная Массачусетским технологическим институтом, меняет концепцию Active Bat, устанавливая излучатели в инфраструктуру, а трекеры прослушивают сигналы. Излучатели отправляют радиочастотные и ультразвуковые сигналы, а приемники используют время между получением радиочастотного сигнала и последующим ультразвуковым сигналом для измерения времени пролета звука (ToF). Трекеры определяют ближайший излучатель, используя эти данные и информацию.

Позиционирование по ультразвуку

Коммерческие решения: преимущества и технические вызовы

Преимущества ультразвукового позиционирования

В отличие от технологий, таких как Wi-Fi или BLE, ультразвук может быть ограничен стенами, дверями и окнами, что позволяет использовать его внутри помещений для точного отслеживания. Это особенно полезно в ситуациях, когда требуется определить местоположение внутри здания. В отличие от сигналов Wi-Fi, которые могут быть нечеткими и проникать сквозь стены, ультразвук остается в пределах комнаты. Таким образом, при использовании ультразвука можно быть уверенным, что взаимодействующие излучатель и приемник находятся в пределах одного помещения, при условии, что препятствия действительно блокируют ультразвуковые сигналы.

Полезность информации о местоположении

В сценариях, где требуется найти определенный объект внутри здания, такой как сервисная тележка в гостинице или инвалидное кресло в больнице, знание комнаты, в которой находится объект, оказывается гораздо более полезным, чем точное расстояние до него от маяка.

Технические вызовы

Однако использование ультразвука для навигации внутри помещений также сталкивается с рядом технических препятствий. Свойство ультразвука, которое является его преимуществом при позиционировании на уровне комнаты и при охоте на летучих мышей, может также стать источником помех. В ограниченном пространстве ультразвук не может проникнуть сквозь препятствия, но может вызывать эхо и рассеиваться по площади, создавая шум. Для преодоления этой проблемы технологии требуется найти способ балансировки сигнала, обеспечивая высокую плотность сигнала для надежного приема, при этом блокируя шум от отраженных и рассеянных сигналов.

Выбор ультразвукового решения: преимущества и ожидания

Преимущества ультразвуковой навигации

В отличие от технологий, таких как Wi-Fi или Bluetooth с низким энергопотреблением (BLE), ультразвук может быть ограничен стенами, дверями и окнами, что позволяет использовать его внутри помещений для точного отслеживания. Это особенно полезно в ситуациях, когда требуется определить местоположение внутри здания. В отличие от сигналов Wi-Fi, которые могут быть нечеткими и проникать сквозь стены, ультразвук остается в пределах комнаты. Таким образом, при использовании ультразвука можно быть уверенным, что взаимодействующие излучатель и приемник находятся в пределах одного помещения, при условии, что препятствия действительно блокируют ультразвуковые сигналы.

Полезность информации о местоположении

В сценариях, где требуется найти определенный объект внутри здания, такой как сервисная тележка в гостинице или инвалидное кресло в больнице, знание комнаты, в которой находится объект, оказывается гораздо более полезным, чем точное расстояние до него от маяка.

Технические вызовы

Однако использование ультразвука для навигации внутри помещений также сталкивается с рядом технических препятствий. Свойство ультразвука, которое является его преимуществом при позиционировании на уровне комнаты и при охоте на летучих мышей, может также стать источником помех. В ограниченном пространстве ультразвук не может проникнуть сквозь препятствия, но может вызывать эхо и рассеиваться по площади, создавая шум. Для преодоления этой проблемы технологии требуется найти способ балансировки сигнала, обеспечивая высокую плотность сигнала для надежного приема, при этом блокируя шум от отраженных и рассеянных сигналов.

Подробнее ознакомиться с разными сферами применения навигации внутри зданий можно в разделе нашего сайта Отрасли и посмотреть видео на нашем youtube канале.

Умные здания и их энергоэффективность

В последнее время умные здания стали очень популярными по всему миру. Это такие здания, которые используют подключенные датчики и технологию Интернета вещей (IoT), чтобы стать более эффективными и удобными для жильцов и владельцев бизнеса. Специалисты прогнозируют, что рынок умных зданий будет расти почти на 25 процентов каждый год.

В 2022 году подключенные решения IoT продолжат стимулировать рост умных зданий, и поставщики таких зданий должны пересматривать свои бизнес-модели, чтобы использовать все преимущества этих технологий. Однако умные здания также имеют свои особенности, например, сложность проникновения сигнала в плотные материалы.

Поэтому важно иметь датчики с высокой энергоэффективностью и возможностью дальнего действия, чтобы они могли обнаруживать опасности, оптимизировать использование ресурсов и повышать удобство и безопасность жизни в зданиях. В целом, подключенные решения IoT продолжат повышать эффективность и удобство умных зданий, и это будет способствовать их дальнейшему росту и популярности.

Создание эффективных решений по управлению энергопотреблением

Стоимость электроэнергии быстро растет, а проблемы окружающей среды вызывают серьезные беспокойства. Из-за этого управляющие зданиями чувствуют все большее давление, чтобы они предлагали больше энергосберегающих решений на своих объектах. Например, теперь интеллектуальные термостаты с датчиками могут контролировать температуру воздуха в помещении и на улице, влажность и наличие людей в помещении.

Эти данные могут использоваться для управления системами внутри зданий, чтобы они могли охлаждать или обогревать помещения только при необходимости. Умные счетчики также позволяют более точно отслеживать потребление энергии в здании, а использование умных электрических розеток позволяет арендаторам обнаруживать устройства с высоким энергопотреблением и принимать меры для снижения потребления.

Устройства LoRa и протокол LoRaWAN упрощают внедрение простой и экономичной интеллектуальной системы управления энергопотреблением в зданиях. Устройства LoRa созданы для обеспечения надежной беспроводной связи на большие расстояния и могут соединять системы управления энергопотреблением с интеллектуальными термостатами, управлением освещением, умными розетками и другими энергосберегающими устройствами.

Профилактическое обслуживание

Профилактическое обслуживание — это когда предприятия регулярно проверяют своё оборудование, чтобы оно работало правильно и не выходило из строя. С помощью технологии подключенных датчиков можно получить более детальную информацию о состоянии оборудования в здании, такой как температура, мощность и звук.

Например, можно отслеживать работу вентиляторов в здании, которые работают круглосуточно. С помощью датчиков LoRa и модема можно определить состояние двигателя вентилятора и его положение, а также выявлять проблемы, когда они возникают. Таким образом, можно запланировать техническое обслуживание заранее и избежать серьезных проблем.

Энергоэффективные умные здания

Информация в реальном времени

Доступ к информации в режиме реального времени является одним из главных преимуществ умных зданий, так как это позволяет менеджерам принимать действенные решения, основанные на актуальных данных. Например:

  • Умные датчики в зданиях могут отслеживать различные проблемы, такие как пожар, качество воздуха и обнаружение опасных химических веществ, и сообщать об этом.
  • Данные о занятости, местоположении и посещаемости могут использоваться для оптимизации использования пространства и изменения планировки офисов и магазинов в режиме реального времени.
  • Бейджи для контроля доступа могут также предоставлять информацию о присутствии, что позволяет обнаруживать вторжения и несанкционированный доступ.

В 2022 году технология Интернета вещей (IoT) продолжает развиваться, и управляющие зданиями могут использовать ее возможности для повышения эффективности и экономии ресурсов.

Подробнее ознакомиться со сферами применения решений для умных зданий можно ознакомиться в разделе нашего сайта Отрасли и посмотреть видео на нашем youtube канале.

Что такое позиционирование в помещениях? Обзор технологий

Позиционирование в помещениях — это технология, которая позволяет определить местоположение человека внутри здания или помещения с помощью различных сенсоров и систем. Эта технология может быть использована в различных областях, таких как магазины, аэропорты, госпитали, офисы и т.д. В этой статье мы рассмотрим, что такое позиционирование в помещениях и какие технологии помогают позволяют достигнуть в этом не плохих результатов.

Что такое позиционирование в помещениях? 

Позиционирование в помещениях — это технология, которая использует различные сенсоры, такие как WiFi, Bluetooth, GPS, RFID и другие, для определения местоположения человека внутри помещения. Система сенсоров обычно расположена в различных местах в помещении, и они работают вместе, чтобы определить точное местоположение человека.

Позиционирование в помещениях может использоваться для различных целей, таких как:

  • Управление и контроль доступа в зданиях
  • Улучшение опыта покупателя в магазинах
  • Оптимизация маршрутов внутри зданий
  • Управление запасами и мониторинг инвентаря в магазинах и складах
  • Управление персоналом в больницах, офисах и других организациях
  • Технологии позиционирования в помещениях

Существует несколько технологий, которые используются для позиционирования в помещениях 

Некоторые из них перечислены ниже:

1. WiFi позиционирование

WiFi позиционирование использует сигналы WiFi для определения местоположения человека внутри помещения. Система сенсоров обычно расположена в различных местах в помещении, и они работают вместе, чтобы определить точное местоположение человека.

2. Bluetooth позиционирование

Bluetooth позиционирование использует сигналы Bluetooth для определения местоположения человека внутри помещения. Технология может использоваться для определения местоположения устройств или смартфонов, что может быть полезно для созданияперсонализированного опыта для покупателей в магазинах.

3. RFID позиционирование

Что такое позиционирование в помещениях? Обзор технологий

Кроме WiFi, Bluetooth и RFID позиционирования, существуют и другие технологии, которые используются для позиционирования в помещениях. Рассмотрим некоторые из них:

4. Инфракрасное позиционирование

Инфракрасное позиционирование использует инфракрасные лучи для определения местоположения человека в помещении. Система сенсоров обычно устанавливается на потолке или стенах и работает с помощью камеры, которая отслеживает движение человека.

5. Ультразвуковое позиционирование

Ультразвуковое позиционирование использует ультразвуковые волны для определения местоположения человека внутри помещения. Система сенсоров обычно устанавливается на потолке или стенах и работает с помощью специальных датчиков, которые отправляют и принимают ультразвуковые сигналы.

6. LiDAR позиционирование

LiDAR позиционирование использует лазерные лучи для определения местоположения человека внутри помещения. Система сенсоров обычно устанавливается на потолке или стенах и работает с помощью лазерных датчиков, которые отслеживают расстояние до объектов и могут создавать 3D-карты помещений.

7. Видео позиционирование

Видео позиционирование использует камеры для определения местоположения человека внутри помещения. Система сенсоров обычно устанавливается на потолке или стенах и работает с помощью камер, которые отслеживают движение человека и могут создавать 2D- или 3D-карты помещений.

Что такое позиционирование в помещениях? Обзор технологий

Каждая из этих технологий имеет свои преимущества и недостатки, и выбор технологии зависит от конкретных требований и задач, которые необходимо решить. Однако, независимо от выбранной технологии, позиционирование в помещениях может значительно улучшить опыт пользователей и помочь организациям управлять своими ресурсами более эффективно.

А еще и Ultra-Wideband используется для позиционирования в помещениях. 

8. UWB позиционирование

Ultra-Wideband — это технология радиосвязи, которая использует очень широкий диапазон частот и короткие импульсы для передачи данных на короткие расстояния. UWB позиционирование в помещениях основано на использовании эффекта временной разницы приема сигналов между разными датчиками, которые устанавливаются внутри помещения. Система UWB позиционирования состоит из нескольких точек доступа, которые устанавливаются внутри помещения, и устройств, которые носят пользователи (например, смартфоны или бейджи). Каждая точка доступа генерирует короткий импульс UWB сигнала, который затем распространяется по всему помещению. Устройства, носящие пользователи, принимают сигналы от всех точек доступа и затем используют алгоритмы обработки сигнала, чтобы определить свое местоположение внутри помещения.

Одним из главных преимуществ UWB позиционирования является высокая точность и низкая плотность размещения оборудования. UWB-сигналы могут проходить сквозь легкие стены и другие объекты, что делает эту технологию более надежной в помещениях, где есть препятствия для других технологий позиционирования. Кроме того, UWB позиционирование может работать в режиме реального времени с максимально быстрым откликом, что позволяет использовать его в решениях, где необходимо мгновенно реагировать на изменения местоположения. Среди примеров применения UWB позиционирования в помещениях можно отметить управление инвентаризацией в розничной торговле, управление материальными ресурсами в гостиницах и офисах, мониторинг перемещения людей в аэропортах и других транспортных узлах. В целом, UWB позиционирование представляет собой эффективную технологию для точного и надежного определения местоположения внутри помещений и indoor-трекинга.

Что такое позиционирование в помещениях? Обзор технологий

Выводы

Позиционирование в помещениях — это технология, которая позволяет определять местоположение объектов или людей внутри зданий и других закрытых пространств. Существует несколько технологий, которые используются для позиционирования в помещениях, таких как Wi-Fi, Bluetooth, RFID, инфракрасные датчики, UWB и другие.

Каждая из этих технологий имеет свои преимущества и недостатки, и выбор конкретной технологии зависит от многих факторов, таких как требуемая точность позиционирования, размер помещения, наличие препятствий и т.д. Также следует учитывать факторы, связанные с безопасностью, конфиденциальностью и совместимостью с существующей инфраструктурой.

Одним из главных преимуществ позиционирования в помещениях является возможность использования этой технологии для создания различных приложений, которые могут повысить эффективность и комфортность жизни людей. Например, такие приложения, как управление инвентаризацией, мониторинг перемещения людей и транспорта, системы безопасности и др., могут быть реализованы с помощью позиционирования в помещениях.

Однако следует отметить, что позиционирование в помещениях также имеет свои ограничения и проблемы, такие как необходимость установки дополнительного оборудования, сложности с определением местоположения в зданиях с множеством препятствий, необходимость поддержания высокой точности и т.д.

Тем не менее, в целом позиционирование в помещениях представляет собой важную технологию, которая может улучшить многие аспекты нашей жизни и бизнеса, и ее использование будет продолжать расширяться в будущем.

Подробнее о применении навигации в помещениях и indoor-позиционировании в разных сферах и индустриях можно узнать в разделе нашего сайта Отрасли

Трилатерация и триангуляции для систем внутреннего позиционирования

Трилатерация в основном строится на мощности сигнала по аналогии с расстоянием до источника. Триангуляция основана на разнице во времени приема сигналов источника и определения угла под которым он приходит.

Отслеживание активов в помещении в данный момент очень актуально. Но говоря об отслеживании объектов в помещении в целом, важно иметь в виду, что оно состоит из разных типов технологий, каждая из которых может вычислять положение одним из двух методов: триангуляцией или трилатерацией. Эти два способа заметно отличаются друг от друга, хотя теоретически оба могут способствовать созданию единого решения для позиционирования внутри помещений.

Что такое трилатерация?

Трилатерация является более распространенным методом расчета положения. Трилатерация использует известное расстояние как минимум от трех фиксированных точек в двумерном пространстве или четырех фиксированных точек в трехмерном пространстве для расчета положения объекта. Трилатерация определяет точку положения находя пересечение ряда кругов (диаграмма Венна).

Что такое триангуляция?

Триангуляция — это метод вычисления положения, основанный на известном расстоянии между двумя измерительными приборами и определенных углах от этих двух точек до объекта. Это работает с использованием теоремы треугольника угол-сторона-угол для нахождения местоположения объекта.

Трилатерация

Триангуляция и трилатерация на практике

Для отслеживания активов в помещении трилатерация на данный момент гораздо более распространена. Большинство компаний использующих технологии Bluetooth используют трилатерацию из-за простоты ее реализации. Рассмотрим решение для отслеживания Bluetooth , все что нужно — это три обычных BLE маячка и метка принимающая от них сигнал (мобильное устройство). Когда метка начинает сообщать значения RSSI сигнала, эти значения можно преобразовать в расстояния и использовать для определения местоположения метки. Точностью примерно 3-4 метра, что является недостаточным во многих случиях, но относительно просто, так как используется обычное оборудование и требуется относительно простая математическая модель.

С другой стороны способ триангуляции немного усложнен. Требует знания не только местоположения маяков BLE, но и их пространственного вращения. Математическая модель незначительно сложнее, чем при трилатерация, но сами измерения значительно более чувствительны из-за того, как они определяюбтся. В то время как трилатерация зависит от уровня сигнала как от аналога расстояния, триангуляция зависит от временных различий в приеме сигналов меток. Поскольку эти сигналы распространяются со скоростью близкой у скорости света, разница во времени при передаче очень мала. Это делает измерительные приборы значительно более дорогими.

Сочетание триангуляции и трилатерации

Как бы сложно это ни было, триангуляция, скорее всего, со временем догонит трилатерацию, и в конце концов они будут использоваться совместно дополняя друг друга во многих приложениях для повышения точности навигации внутри помещений. Как уже упоминалось, трилатерация обеспечивает точность в 3-4 метра, а  триангуляция способна достичь точности до 1 метра. Их совокупность обладает высоким потенциалом для навигационных систем с более высокой точностью, особенно когда высокие затраты на решение задачи не являются проблемой и точность в приоритете.

Подробнее о работе решения на основе триангуляции и BLE описано на этой странице – AOA навигация.

#secondary

Обращение успешно отправлено!