Канал «ОТР» выпустил передачу посвященную навигации в помещениях, в котором поучаствовала и наша команда, рассказав о разработанной компанией «Индорс Навигейшн» геоинформационной системе на основе цифрового двойника Indoors Navigation Platform и продемонстрировали ее возможности.
Репортеры сами испытали работу системы позиционирования в помещених, оценили все «плюсы» от ее внедрения и рассказали о предпосылках появления систем навигации. У журналистов получился интересный сюжет, а нам было приятно поработать и поделиться опытом с командой телевизионщиков.
Так же предлагаем вам посмотреть еще один репортаж о indoor навигации канала «Россия 1» в нашем блоге по the link.
Трилатерация в основном строится на мощности сигнала по аналогии с расстоянием до источника. Триангуляция основана на разнице во времени приема сигналов источника и определения угла под которым он приходит.
Отслеживание активов в помещении в данный момент очень актуально. Но говоря об отслеживании объектов в помещении в целом, важно иметь в виду, что оно состоит из разных типов технологий, каждая из которых может вычислять положение одним из двух методов: триангуляцией или трилатерацией. Эти два способа заметно отличаются друг от друга, хотя теоретически оба могут способствовать созданию единого решения для позиционирования внутри помещений.
Что такое трилатерация?
Трилатерация является более распространенным методом расчета положения. Трилатерация использует известное расстояние как минимум от трех фиксированных точек в двумерном пространстве или четырех фиксированных точек в трехмерном пространстве для расчета положения объекта. Трилатерация определяет точку положения находя пересечение ряда кругов (диаграмма Венна).
Что такое триангуляция?
Триангуляция — это метод вычисления положения, основанный на известном расстоянии между двумя измерительными приборами и определенных углах от этих двух точек до объекта. Это работает с использованием теоремы треугольника угол-сторона-угол для нахождения местоположения объекта.
Триангуляция и трилатерация на практике
Для отслеживания активов в помещении трилатерация на данный момент гораздо более распространена. Большинство компаний использующих технологии Bluetooth используют трилатерацию из-за простоты ее реализации. Рассмотрим решение для отслеживания Bluetooth , все что нужно — это три обычных BLE маячка и метка принимающая от них сигнал (мобильное устройство). Когда метка начинает сообщать значения RSSI сигнала, эти значения можно преобразовать в расстояния и использовать для определения местоположения метки. Точностью примерно 3-4 метра, что является недостаточным во многих случиях, но относительно просто, так как используется обычное оборудование и требуется относительно простая математическая модель.
С другой стороны способ триангуляции немного усложнен. Требует знания не только местоположения маяков BLE, но и их пространственного вращения. Математическая модель незначительно сложнее, чем при трилатерация, но сами измерения значительно более чувствительны из-за того, как они определяюбтся. В то время как трилатерация зависит от уровня сигнала как от аналога расстояния, триангуляция зависит от временных различий в приеме сигналов меток. Поскольку эти сигналы распространяются со скоростью близкой у скорости света, разница во времени при передаче очень мала. Это делает измерительные приборы значительно более дорогими.
Сочетание триангуляции и трилатерации
Как бы сложно это ни было, триангуляция, скорее всего, со временем догонит трилатерацию, и в конце концов они будут использоваться совместно дополняя друг друга во многих приложениях для повышения точности навигации внутри помещений. Как уже упоминалось, трилатерация обеспечивает точность в 3-4 метра, а триангуляция способна достичь точности до 1 метра. Их совокупность обладает высоким потенциалом для навигационных систем с более высокой точностью, особенно когда высокие затраты на решение задачи не являются проблемой и точность в приоритете.
Подробнее о работе решения на основе триангуляции и BLE описано на этой странице – AOA навигация.
Improving work efficiency by optimizing the working hours of employees and controlling their movement at a factory or other industrial facility is one of the most important tasks for any modern company thinking about digitalizing its business processes.
The geographic information system of the Indoors Navigation Platform allows you to create a digital twin of the enterprise in the shortest possible time and at minimal cost with maximum functionality. Tracking employees in production using INP is available in all types of industrial enterprises.
We tested the operation of our geoinformation system in a manufacturing facility with a large number of metal structures and were able to achieve positioning accuracy within half a meter, as seen in the video below.
You can always easily find more detailed information about projects related to indoor positioning and the activities of Indoors Navigation in our blog..
На телеканале Россия 1 вышел небольшой сюжет о компании Индорс Навигейшн, в котором коротко рассказали о направлениях работы и системе indoor позиционирования Indoors Navigation Platform.
Больше информации о проектах и деятельности Индорс Навигейшн вы найдете в нашем blog..
В 2021 году компания Индорс Навигейшн интегрировала в ГИС ситему Indoors Navigation Platform модуль, поддерживающий технологию определения положения объекта в помещении по углу прибытия Bluetooth сигнала — Angle of Arrival (AoA).
AoA решение основано на принципе измерения угловых направлений (азимут и высота) от устройства — локатора, размещенного в известном месте. Под углом прихода подразумевается угол, под которым сигнал встречается с приемником. Угол измеряется путем вычисления фазы принимаемых радиосигналов.
Локаторы Индорс Навигейшн используют запатентованные алгоритмы угловой оценки и расширенную обработку сигналов в своем механизме позиционирования. В результате решение на основе AoA обеспечивает позиционирование с точностью до 1 метра.
Технически решение AoA работает по протоколу Bluetooth 5.1 и пока еще поддерживается не многими мобильными устройствами, поэтому для BTC не сильно востребовано в данное время. Однако для BTB использование этого решения позволяет сэкономить на обслуживании навигационной инфраструктуры BLE датчиков (периодическая замена элементов питания) и увеличить точность. Монтаж и настройка инфраструктуры локаторов сложнее и дороже чем BLE маяков, так как требует подключения кабеля Ethernet (POE) и установки на потолок.
Комбинированное программное обеспечение для позиционирования
Возможна комбинация обоих методов, поэтому для областей, где нет необходимости в позиционировании с точностью до метра, можно использовать менее дорогое оборудование. В областях, где необходимо такое очень точное позиционирование, используются локаторы.
В большинстве решений для отслеживания активов на уровне близости используется сочетание высокой точности позиционирования и низкой точности присутствия в разных областях.
RSSI против AoA
Оба термина обозначают методы расчета местоположения на основе технологии Bluetooth. В случае позиционирования на основе индикатора мощности принимаемого сигнала (RSSI) Beacon Tracker измеряет мощность сигнала, который постоянно передают метки активов — передатчики, которыми оснащены отслеживаемые активы. Простая для понимания картина – это волны, которые «излучает» брошенный в воду камень и которые ослабевают с увеличением расстояния. Такой тип определения местоположения посредством измерения расстояния на основе уровней сигнала называется латерацией, а используемый здесь эффект уменьшения уровня сигнала называется затуханием.
Расчет положения на основе угла прибытия (AoA) представляет собой сетецентрическую архитектуру, основанную на угловой оценке. В отличие от латерации, устройство Bluetooth может сделать свое местоположение доступным, передавая пакеты с поддержкой пеленгации с использованием одной антенны. Затем радиосигнал принимается многоантенным устройством, известным как локатор. Для двумерной идентификации положения необходимы два угла, вычисленные с помощью локатора. Для трехмерной идентификации положение вычисляется путем триангуляции как минимум по двум локаторам.
Однако для создания необходимой инфраструктуры для приемника требуется больше усилий, чем для инфраструктуры, предназначенной для RSSI. Этот метод в настоящее время не подходит для мобильной навигации внутри помещений.
Примеры использования позиционирования по углу прибытия
Высокоточное отслеживание активов используется в логистике и здравоохранении. Он позволяет быстро и надежно определять местонахождение инструментов, медицинских приборов и производственного оборудования, а также мелких деталей. В то же время AoA-Tracking также позволяет безопасно идентифицировать близко расположенные активы, чтобы можно было надежно и точно отслеживать крупные детали в узких местах.
Отслеживание с точностью до сантиметра
Отслеживание активов любого размера, которые находятся близко друг к другу
Отслеживание активов в производственных цехах
Например, производитель авиационных двигателей хочет идентифицировать и отслеживать положение незавершенных двигателей в своем производственном цеху. Хотя двигатели очень большие, их нельзя надежно отследить с помощью метода на основе RSSI, потому что позиционирование слишком неточное, чтобы идентифицировать большие объекты, хранящиеся рядом друг с другом. Позиционирование AoA достаточно точное, чтобы иметь возможность различать объекты даже в ограниченном пространстве и надежно идентифицировать требуемую заготовку.
Отслеживание активов в больницах
В больнице тысячи единиц оборудования должны быть надежно доступны и легко доступны. Особенно в тех случаях, когда большую роль играет нехватка времени, важно не только получить приблизительное местоположение, например определенное место хранения, но и иметь точную информацию о том, где на самом деле находится искомый предмет.
Высокоточное отслеживание людей
Для сотрудников, работающих в одиночку, высокоточное отслеживание является особым фактором безопасности, особенно в критических ситуациях в сложных условиях. Например, когда один рабочий попадает в аварию на нефтехимическом заводе. В экстренных случаях помощь можно отправить непосредственно человеку, а не только в соответствующий отдел.
Вас интересует решение для высокоточного позиционирования с AoA-позиционированием?
Возможности отслеживания с использованием технологии угла прибытия сигнала увеличиваются с каждым годом по мере развития решений и технологического прогресса. Несмотря на то, что отслеживание AoA подходит практически для любой области, успешная реализация проекта всегда зависит от выбора подхода и расположения оборудования — ведь каждый случай индивидуален и должен учитывать специфику помещений. Индорс Навигейшн обладает большим опытом в данной сфере.
Если вы уже планируете конкретный проект внутренней навигации или просто хотите сформулировать свои задачи, мы вас с удовольствием проконсультируем. Вместе мы обязательно найдем лучшее навигационное решение для вашего предприятия!
Более подробную информацию о технологии можно найти на нашем on the website.
Три основные LPWAN для беспроводных датчиков: LoRa, SigFox и NB-IoT.
LoRa («большой радиус действия») — широко распространенный стандарт, использующий схему модуляции с расширенным спектром для передачи данных на очень большие расстояния. LoRa является основой для LoRaWAN, которая соединяет беспроводные датчики через шлюзы или сетевых коммутаторы LoRaWAN. LoRaWAN имеет более высокую пропускную способность, чем Sigfox, и может более эффективно передавать пакеты данных несмотря на помехи.
С LoRaWAN данные передаются с помощью зашифрованных сообщений между шлюзами и сетевыми серверами. Серверы аутентифицируют и расшифровывают данные, которые в конечном итоге отправляются в платформы управления для их визуализации и анализа. Пользователи могут отправлять команды непосредственно на беспроводные датчики через LoRaWAN для настройки устройств и изменения параметров работы. Это востребовано при использовании платформ по управлению эксплуатацией здания или помещения, например в Индорс Навигейшн.
Датчики LoRaWAN делятся на три группы в зависимости от способности датчика отправлять и получать данные с командами управления. Устройства класса А остаются в спящем режиме до тех пор, пока у них не появятся данные, которые требуется передать. Эти датчики могут отправлять сообщения по исходящему каналу связи в любое время, что делает их особенно полезными в беспроводных сетях с сенсорами и приводами (WSAN).
Датчики класса B имеют запланированные окна в работе устройства, чтобы получать данные по приходящим каналам связи от серверов. Устройства класса C поддерживают постоянно открытое окно приема данных управления, пока не передают информацию сами. Следовательно, датчики C обеспечивают связь с малой задержкой, но потребляют больше энергии, чем датчики других классов.
С такими типами датчиков LoRaWAN разработчики сетей должны иметь подходящее аппаратное устройство шлюза для получения данных и последующей их передачи на серверы.
SigFox подключает беспроводные датчики напрямую к базовым станциям, используя сверхузкополосную передачу. Стандарт охватывает более 50 стран и может поддерживать более 100 каналов на поддиапазонах со скоростью 500 бит/с. Однако пакеты данных ограничены 12 байтами и не поддерживается ACK команды. Пользователи SigFox платят не только за само устройство, но и за количество исходящих и исходящих сообщений в день.
NB-IoT использует существующую инфраструктуру вышек сотовой связи, чтобы обеспечить обширное покрытие для устройств с низким энергопотреблением. Стандарт использует защитные полосы частот для узких каналов связи, чтобы избежать помех, и может хорошо проходить сквозь стены в помещения. В 2018 году сотовый оператор из США T-Mobile добавила покрытие NB-IoT через свою сеть 4G.
Что делает беспроводную сенсорную сеть более эффективной?
Есть несколько критических характеристик хорошо спроектированных беспроводных сенсорных сетей.
Во-первых, узлы должны легко обнаруживаться в сети. Обслуживание датчиков, например, замена батарей и обновление по, становится намного проще, когда разработчики знают, где найти все свои устройства.
Во-вторых, сенсорные сети должны выдерживать сбои в узлах без массовых сбоев работы самих датчиков. Топология сети играет большую роль в том, как задачи решаются при подключения. То есть те, кто развертывает беспроводные сети датчиков, должны выбирать топологии, способные функционировать при отказе некоторых компонентов.
В-третьих, сети должны легко масштабироваться. Разработчики должны иметь возможность эффективно развивать свои сети беспроводных датчиков, не вкладывая в расширение значительных средств.
Наконец, при проектировании сети важно учитывать энергопотребление. Используемые беспроводные датчики должны соответствовать требованиям данных платформ IoT. В противном случае сетевые администраторы рискуют потратить много времени и сил на обслуживание и замену.
Как сегодня используются беспроводные датчики?
Уже есть много реальных примеров того, как технологии сетей беспроводных датчиков используется в различных отраслях и применяется в разных программных решениях по управлению зданием и повышению эффективности при его эксплуатации. Одним из таких примеров является разработанная компаний Индорс Навигейшн платформа INP — Геолокационная платформа для навигации в помещениях на основе цифрового двойника объекта Indoors Navigation Platform, позволяющая строить маршрут, отслеживать перемещения внутри помещений и собирать аналитическую информацию.
Индустрия безопасности объектов использует технологию беспроводных датчиков во многих своих решениях. С помощью беспроводных датчиков и платформы Индорс Нави, компании могут контролировать свои помещения, выявлять подозрительную активность и отслеживать ценные материальные активы. Банки могут внедрить беспроводные тревожные кнопки для сотрудников, а розничные торговые точки установить беспроводные датчики открытия окон в каждой точке продаж. Жители загородных домов могут использовать беспроводные датчики для обнаружения вредных газов в воздухе, например таких как окись углерода.
Что касается управления коммунальными услугами, беспроводные датчики помогают автоматизировать обмен данными между критически важными системами и минимизировать возникающие неполадки. Например, датчики протечки воды могут быть установлены на стенах для обнаружения поломок сантехники или труб, которые могут лопнуть зимой. Беспроводные датчики протечки используются в серверных помещениях и центрах обработки данных для обнаружения наличия воды и влаги рядом с компьютерным оборудованием.
Беспроводные датчики также применяются в борьбе со стихийными бедствиями. В США, штате Техас, на мостах устанавливаются беспроводные датчики, которые могут определять уровень воды выше определенного порога, что указывает на возможное внезапное наводнение в этом районе. Беспроводные вибро датчики используются на промышленных предприятиях с крупным оборудованием для прогнозирования отказов до их фактического возникновения.
В сфере здравоохранения беспроводные датчики помогают медицинским бригадам контролировать состояние пациентов в режиме реального времени. Беспроводные кнопки служат в качестве устройств персонального вызова в учреждениях по уходу за пожилыми людьми. Датчики влажности помогают руководителям больниц поддерживать условия, способствующие скорейшему выздоравливанию пациентов в больнице.
Ритейлеры и розничные магазины используют беспроводные датчики чтобы создать положительный потребительский опыт для посетителей. В туалетах устанавливаются беспроводные датчики для того, чтобы посетители могли сообщать когда необходима уборка. Беспроводные датчики температуры воздуха помогают супермаркетам контролировать холодильники и другие выложенные товары.
Это всего лишь несколько примеров того, как беспроводные сети датчиков повышают эффективность и положительно влияют на жизнь людей. Поскольку пространство IoT продолжает развиваться, ожидайте появления новых инновационных платформ по работе с беспроводными датчиками, которые навсегда изменят современные отрасли. Подробнее о платформе компании Indoors Navigation.
Предоставив возможность бытовым приборам обмениваться данными по беспроводной сети, мы можем автоматизировать обмен данными и повысить эффективность из работы, которая положительно повлияет на жизнедеятельность компании.
В основе лежит технология беспроводных датчиков, которая позволяет нам собирать информацию об окружающей среде в течение длительных промежутков времени в автоматическом режиме. Беспроводные датчики можно настроить для измерения множества параметров: от температуры воздуха до вибрации здания. На рынке доступно множество различных типов беспроводных датчиков.
Многие беспроводные сети содержат сотни, а часто и тысячи беспроводных датчиков. Эти устройства уже используются в самых разных сфе5рах применения: розничная торговля, сельское хозяйство, городское управление, безопасность и оптимизация цепочке поставки товаров.
Давайте в этой статье углубимся в то, как работают беспроводные датчики, и разберем почему они так важны в современном мире.
Что делают беспроводные датчики?
Беспроводные датчики собирают данные о окружающих условиях и передают их в контроллеры систем управления или программные платформами для дальнейшей обработки. Датчики обычно распределены по крупным территориям и запрограммированы для связи с шлюзами и серверами.
Одним из основных преимуществ беспроводных датчиков является то, что они требуют минимального обслуживания и небольшого количества энергии для поддержания работоспособности. Датчики могут поддерживать передачу данных в платформу в течение нескольких лет, прежде чем потребуется замена элементов питания.
Когда дело доходит до создания беспроводных сетей, один из самых больших вопросов с которыми сталкиваются разработчики — это как разместить беспроводные датчики в полевых условиях. Сенсоры должны быть распределены таким образом, чтобы поддерживать главную задачу, выполняемую всей сетью.
Как беспроводные датчики объединены в сеть?
Двумя наиболее распространенными схемами объединения в сеть беспроводных датчиков являются топология «звезда» и «сетка».
Топология «сетки» описывает сети, в которых датчики подключаются к как можно большему количеству других близлежащих узлов. В результате данные могут «прыгать» с одного узла на другой без необходимости следовать определенным маршрутам до сервера или через последовательности датчиков. В результате производительности сети не сильно влияете на количество и дальность расположения датчиков, поскольку данные могут идти по нескольким путям к средствам их обработки. Сетчатые структуры сети также легко маcштабируются, поскольку новым датчикам нужно только подключаться к уже существующим узлам.
Топология «звезда» описывает сети, в которых каждый датчик подключается непосредственно к центральному шлюзу или концентратору. Эти концентраторы принимают информацию от датчиков и передают ее на сервер для обработки платформой. Например так устроена работа геоинформационной системы на основе платформы Indoors Navigation Platform. В таких схемах подключения узлы не взаимодействуют напрямую друг с другом.
Как беспроводные датчики взаимодействовали ранее?
Существует несколько доступных беспроводных стандартов, которые могут поддерживать сенсорные сети.
До недавнего времени сотовые технологии были наиболее часто используемым вариантом подключения к глобальной сети (WAN). Однако сотовые технологии затратны и потребляют не мало энергии, что не очень подходит для маломощных устройств дальнего действия, например беспроводных датчиков для систем навигации в помещениях.
Помимо сотовых технологий, применяется и Wi-Fi, Bluetooth с низким энергопотреблением (BLE) и Zigbee, которые также могут поддерживать беспроводные сети. Эти стандарты также относятся к категории «традиционных беспроводных решений», но имеют уникальные преимущества и недостатки.
Wi-Fi— одна из наиболее широко используемых сегодня беспроводных технологий в помещениях. Wi-Fi использует диапазоны частот 2,4 ГГц и 5 ГГц. Поскольку Wi-Fi сильно распространен, относительно легко использовать существующие сети для подключения беспроводных датчиков.
Однако сигналы Wi-Fi с трудом проникают через стены, что является недостатком для решений с большим радиусом действия. Так же сети Wi-Fi управляются локальными маршрутизаторами, которые не всегда могут иметь прямые пользовательские интерфейсы для обновления сети датчиков.
BLE — это протокол с низким энергопотреблением, отличный от традиционной технологии Bluetooth. BLE использует полосу частот 2,4 ГГц для передачи небольших объемов информации. Беспроводной стандарт дешевле в использовании чем Wi-Fi, однако те же проблемы возникают, когда речь идет об отправке данных через стены или на большие расстояния. Кроме того, BLE чувствителен к помехам сигнала, поскольку многие другие устройства и стандарты используют полосу частот 2,4 ГГц.
Zigbee — это стандарт беспроводной связи, основанный на ячеистой сети для поддержки большого количества узлов в одной сети. Zigbee лучше всего подходит для беспроводных сенсорных сетей, которым не требуется большая пропускная способность.
Одним из недостатков Zigbee является то, что некоторые датчики должны быть всегда включены, чтобы обмениваться систему информацией для обработки. В результате Zigbee потребляет больше энергии, чем современные ведущие стандарты.
Какие стандарты связи регулируют работу беспроводных датчиков?
Хотя традиционные беспроводные стандарты эффективны, уже появился новый класс стандартов, более эффективных для работы беспроводными сетевыми датчиками. Сети с низким энергопотреблением (LPWAN) становятся все более популярной технологией для передачи данных на большие расстояния. LPWAN могут поддерживать миллиарды датчиков и активно использоваться для работы с различными программными платформами по управлению зданием.
LPWAN предлагают несколько преимуществ по сравнению с традиционными стандартами. Во-первых, они потребляют меньше энергии от устройств, поскольку передают информацию со значительно меньшей скоростью передачи данных. Во-вторых, датчики могут работать несколько лет в сетях LPWAN на одном заряде батареи. В-третьих, LPWAN также могут поддерживать работу датчиков на огромных пространствах, поскольку данные могут передаваться на большие расстояния.
Расходы на развертывание беспроводных датчиков в сетях LPWAN ниже, по сравнению с альтернативными решениями. Поскольку скорость передачи данных очень низкая, требования к оборудованию более низкие.
Есть несколько недостатков использования LPWAN. Первый заключается в том, что LPWAN плохо подходят для платформ использующих большие пакеты данных. Беспроводные датчик с передачей больших данных должны использовать сотовые сети или сети Wi-Fi, BLE и Zigbee с высокой пропускной способностью. Второе недостаток в том, что LPWAN используют нелицензированные радиочастоты, которыми сложнее управлять с точки зрения помех.
Подробнее о компании, разработчике платформы для эксплуатации зданий Indoors Navigation.
UWB навигация — это технология cверхширокополосного позиционирование (UWB-позиционирование) — одна из самых последних технологий определения положения внутри помещений, которая дает точность до 0,5 метра.
Using Ultra-WideBand technology, it is possible to accurately determine the location of a person in a building and display it on the map of his smartphone screen, with the ability to guide a route to the desired point.
The Indoors Navigation team tested the operation of UWB equipment on the INP platform in a small office. You can see the test result in the video clip, the positioning accuracy of half a meter is achieved.
Navigation in the subway is becoming more convenient with the use of a mobile navigator for passengers, which was tested in 2022 at Tsaritsyno station.
The mobile navigator helps you quickly familiarize yourself with the map and helps you save time at the station, helping to increase the comfort level of passengers.
Indoors Navigation has digitized the entire Tsaritsyno transport hub and made a detailed map of the metro station, MCD, commuter trains, all crossings and public transport stops. As part of the project, more than a hundred navigation sensors were installed at TPU Tsaritsyno.
Using the developed mobile application, the user will be able to quickly navigate the transport hub, understand where it is located and plot a route to the area or object he needs. The navigator will keep it running continuously throughout the entire route.
The app also has a mode for navigating visually impaired and blind passengers, which helps them with voice prompts along the route. They are offered safer routes and the opportunity to order help with a click or a voice command in the application.
Using the API and SDK, the functionality can be quickly integrated into other iOS and Android applications, even by third-party developers, and update management and route editing can be performed online in the system's web dashboard.
Indoors Navigation Platform — универсальная система управления потоками посетителей, повышающая комфорт их перемещения.
For more information about the case of the implementation of the Indoors Navi positioning systems, see the link.
Появление на рынке устройств с технологиями BLE + LoRa дает новые возможности для платформ внутреннего позиционирования и отслеживания активов.
На данный момент еще много не решенных вопросов позиционирования и отслеживания активов в помещениях, даже несмотря на то, что многие компании работают над созданием надежного, легко масштабируемого и экономически выгодного решения. BLE, WiFi, Ultra Wide Band, RFID — это лишь некоторые технологии, которые использовались ранее для разработки решений внутреннего позиционирования и отслеживания активов. Очевидно, что потенциал рынка огромен, так как подобные решения охватывают такие области, как розничная торговля, медицина, спорт, транспорт и производство. Одним из недостающих элементом навигации внутри помещений была возможность комбинировать BLE и LoRa внутри одного устройства.
Прежде чем сможем углубиться и разобрать что означает сочетание BLE + LoRa для внутреннего позиционирования и отслеживания активов, разберем сначала все по частям.
Что такое BLE?
Bluetooth Low Energy (BLE) — это реализация Bluetooth с низким энергопотреблением. BLE и Bluetooth работают в одном и том же диапазоне ISM 2,4 ГГц и имеют одинаковую эффективную дальность примерно 80 метров. Однако BLE не может отправлять большие объемы данных и имеет не стабильный сигнал. Эти ограничения, накладываемые на использующие BLE устройства, позволяют значительно экономить энергопотребление и годами работать от небольшой батареи. BLE идеально подходит для позиционирования внутри помещений и отслеживания активов, когда необходимо со средней точностью и периодически передавать небольшие объемы информации в зоне крупных крытых пространств.
Что такое LoRa?
LoRa переводится как «длинное радио» — это собственный формат модуляции, принадлежащий компании Semtech. Аппаратные компоненты, используемые чипами SX1272 и SX1276 LoRa, представляют собой метод модуляции, называемый Chirp Spread Spectrum (CSS) для создания физического (PHY) уровня технологического стека LPWAN. В сочетании с протоколом связи LoRaWAN устройства могут обеспечивать связь на больших расстояниях при низком энергопотребление.
Как BLE используется для внутреннего позиционирования и отслеживания активов?
Позиционирование внутри помещений и отслеживание активов начинается с трех компонентов: тегов и шлюзов. Теги, излучающие сигналы, привязываются к интересующим вас объектам, которые вы хотите отслеживать. Шлюзы можно рассматривать как приемники. Они сканируют метки и измеряют силу сигнала передачи от меток. Шлюзы взаимодействуют с метками и передают собранные данные в облако. Затем эти данные обрабатываются с помощью механизма определения местоположения, состоящего из различных алгоритмов и фильтров. После этого шага вы сможете открыть мобильное или веб приложение, чтобы найти свои активы.
Проблемы внутреннего позиционирования и отслеживания активов
Есть несколько проблем, которые существуют в сфере внутреннего позиционирования и отслеживания активов: установку, стоимость и масштабирование.
Одной из проблем установки является определение правильного количества оборудования, необходимого для данного пространства. При обследовании объекта часто бывает трудно полностью просчитать решение для позиционирования внутри помещений и отслеживания активов и определить количество оборудования. Слишком большое количество оборудования приводит к ненужной избыточности и расходам на вашу систему навигации. Недостаточное количество оборудования может привести к мертвым зонам и не качественной работе навигации.
Помимо оборудования, решения для внутреннего позиционирования и отслеживания активов требуют сотрудничества с местной командой сетевых администраторов, задачи которых заключаются в защите сети компании. Каждое устройство, подключенное к сети, может представлять дополнительную уязвимость в системе безопасности. У администраторов не много стимулов для работы с поставщиками решений IoT, так как вся сеть может рухнуть в случае взлома. Если администратор не будет эффективно работать с поставщиком решения IoT, установка системы завершится не лучшим образом.
Кроме того, по мере расширения пространств, в которых вы хотите использовать систему внутреннего позиционирования и отслеживания активов, возрастает стоимость и сложность решения. Что хорошо работало на небольшой площади в 500 квадратных метров, может совершенно иначе на складе площадью 15000 квадратных метров.
Устройства BLE + LoRa решают текущие проблемы
Появление на рынке макетных плат с устройствами BLE + LoRa означает несколько вещей. Во-первых, это будут устройства, собирающие данные с меток, и эти же устройства также смогут передавать информацию через LoRa на центральный шлюз. Диапазон одного шлюза LoRa может легко заменить все предыдущие точки доступа, необходимые для внутреннего позиционирования и отслеживания активов. Устройства с поддержкой BLE + LoRa уменьшают необходимость внесения изменений в существующую инфраструктуру, что приводит к экономии времени интегратора и денег клиента.
Получается более широкий охват внутреннего позиционирования и отслеживания активов внутри здания за небольшую часть стоимости других решений. Такой шлюз станет альтернативой использованию локальной сети клиента, которая не всегда может быть надежной. Поставщикам решений IoT больше не нужно беспокоиться о настройке сетей с it администратором, а ему не нужно беспокоиться о внедрении новых уязвимостей. Учитывая все эти дополнения, которые приносит устройство BLE + LoRa, окупаемость решения для позиционирования и отслеживания активов в помещении становится очевидной и привлекательной для клиентов.
Finally
Появление устройства с поддержкой BLE + LoRa давно уже подошло. Устройства с поддержкой BLE + LoRa удаляют лишние элементы системы, которые могут привести к сбою решения для позиционирования внутри помещений и отслеживания активов. Комбинация устройств с возможностями BLE и LoRa позволяет геолокационным платформам создавать приложения с новым функционалом на больших зонах покрытия.
Устройства с поддержкой BLE + LoRa значительно повысят эффективность комплексных решений для позиционирования внутри помещений и отслеживания активов, что сделает их более доступными. Аппаратная инфраструктура и время ее развертывания станет значительно меньше, что упростит установку. С расширяющейся сетью LoRa по всему миру подключение к ней будет только проще.
TLDR: устройства с поддержкой BLE + LoRa будут революционными для систем позиционирования в помещениях и отслеживания материальных активов. Разработчикам навигационных IT решений в дальнейшем не надо интегрироваться в локальную сеть заказчика и сталкиваться с проблемами подключения и изменениями инфраструктуры. Снижение сложности монтажа позволит интеграторам быстро разворачивать системы позиционирования в помещениях и отслеживания активов внутри зданий по конкурентной цене.
Подробнее о навигации внутри помещений на on the website.
Этот веб-сайт использует файлы cookie для улучшения вашего опыта во время навигации по веб-сайту. Из них файлы cookie, которые классифицируются как необходимые, хранятся в вашем браузере, поскольку они необходимы для работы основных функций веб-сайта. Мы также используем сторонние файлы cookie, которые помогают нам анализировать и понимать, как вы используете этот веб-сайт. Эти файлы cookie будут храниться в вашем браузере только с вашего согласия. У вас также есть возможность отказаться от этих файлов cookie. Но отказ от некоторых из этих файлов cookie может повлиять на ваш опыт просмотра.
Необходимые файлы cookie абсолютно необходимы для правильной работы веб-сайта. В эту категорию входят только файлы cookie, обеспечивающие базовые функции и функции безопасности веб-сайта. Эти файлы cookie не хранят никакой личной информации.
Любые файлы cookie, которые могут не быть особенно необходимыми для функционирования веб-сайта и используются специально для сбора персональных данных пользователей с помощью аналитики, рекламы и другого встроенного содержимого, называются необязательными файлами cookie. Перед запуском этих файлов cookie на вашем веб-сайте обязательно получить согласие пользователя.