Employee tracking with INP

Testing the operation of the personnel tracking module in the geographic information system of the Indoors Navigation Platform (INP) simultaneously using BLE and UWB technology. During testing, personnel movements are monitored using various technologies such as BLE positional sensors and Ultra-WideBand receivers.

The INP system registers and analyzes data on the movement of each employee, determining his location in real time and creating a digital map of movements.

You can watch the test result in the video clip and make sure that the location of employees is correctly determined with a tracking accuracy of about 0.5 meters and a delay of up to 1 second. https://indoorsnavi.pro/

 

We suggest you watch the story about indoor navigation of the Russia 1 channel in our blog on the link.

Ультразвуковое позиционирование в помещениях

Ультразвуковая технология позволяет определять звуковые волны с высокими частотами, не воспринимаемыми человеческим ухом, обычно свыше 20 килогерц (кГц). Этот метод ультрозвукового позиционирования нашел свое применение в природе, например, летучие мыши используют его для эхолокации. В разделенных на отдельные комнаты помещениях, таких как больницы или гостиницы, ультразвук может быть эффективным, но для широких открытых пространств требуются дальнейшие исследования и испытания.

В данной статье мы представим обзор ультразвуковых технологий позиционирования и отслеживания внутри помещений. Коммерческие решения в области ультразвукового слежения обещают точное определение объектов с точностью до нескольких сантиметров, возможно, даже на уровне комнаты. Активные исследования по использованию ультразвука для полноценной навигации в помещениях уже показали многообещающие результаты, и предстоящий коммерческий релиз направлен на превращение этого потенциала в реальность.

В интернете сейчас можно найти множество официальных документов и исследовательских презентаций, посвященных ультразвуку. Отделение потенциальных применений этой технологии от уже проверенных развертываний может быть сложной задачей. В данной статье мы постараемся разъяснить некоторые неясности, предоставив обзор ультразвука в целом, принципов его работы в отслеживании и возможности использования текущих доступных решений в комплексной системе навигации внутри помещений.

Использование ультразвука для навигации внутри помещений стало обычной практикой. Ультразвуковое позиционирование позволяет определить расстояние до объектов и создать детальную карту окружающего пространства. Такой подход нашел свое применение в различных сферах, включая робототехнику, системы безопасности и умный дом. Ультразвуковые сенсоры способны точно измерять расстояния и помогать устройствам ориентироваться внутри помещений, обеспечивая надежную навигацию.

Что такое ультразвук?

Ультразвук представляет собой спектр звуковых волн с частотами, выше предела восприятия человека, обычно свыше 20 килогерц (кГц). Это явление природы, широко используемое для определения местоположения и навигации. В этой статье мы рассмотрим примеры использования ультразвука в природе и его значимость для навигации внутри помещений.

Летучие мыши известны своим использованием эхолокации для обнаружения насекомых. Они излучают ультразвуковые импульсы с частотой до 200 кГц и могут воспринимать крайне тонкие различия (до 0,0001 кГц). Китообразные и некоторые рыбы также используют ультразвук для навигации, охоты и общения. На суше собаки и кошки обладают чувствительностью к ультразвуковому спектру, а землеройки могут использовать ультразвук для обнаружения объектов сквозь траву и мох.

ультразвуковая навигация в помещениях

Исследования биомимикрии: от животных к технологиям навигации в помещениях

На протяжении десятилетий исследователи задавались вопросом, можно ли превратить биологический успех животных в технологический успех. Различные проекты, такие как Active Bat, Cricket и DOLPHIN, черпали вдохновение из животного мира, в особенности из животных, использующих эхолокацию. Они основывались на принципе измерения времени пролета (ToF) ультразвуковых сигналов от передатчиков к приемникам для определения точного местоположения объектов с точностью до нескольких сантиметров с помощью трилатерации.

Active Bat: расширение зоны покрытия

Система Active Bat использует два передатчика, чтобы увеличить зону покрытия. Потолочные приемники прослушивают ультразвуковые импульсы и передают данные в центральную систему, которая, основываясь на мультилатерации с использованием трех или более приемников, определяет положение передатчика с точностью до 3 см. Но такая система требует большого количества приемников, размещенных под определенными углами, что делает ее дорогостоящей для масштабного применения.

DOLPHIN: улучшение Active Bat

Проект DOLPHIN улучшает систему Active Bat, требуя известные местоположения только нескольких сенсорных узлов. Другие датчики определяют свое положение относительно этих узлов, упрощая систему и снижая затраты.

Cricket: обратный подход

Система Cricket, разработанная Массачусетским технологическим институтом, меняет концепцию Active Bat, устанавливая излучатели в инфраструктуру, а трекеры прослушивают сигналы. Излучатели отправляют радиочастотные и ультразвуковые сигналы, а приемники используют время между получением радиочастотного сигнала и последующим ультразвуковым сигналом для измерения времени пролета звука (ToF). Трекеры определяют ближайший излучатель, используя эти данные и информацию.

Позиционирование по ультразвуку

Коммерческие решения: преимущества и технические вызовы

Преимущества ультразвукового позиционирования

В отличие от технологий, таких как Wi-Fi или BLE, ультразвук может быть ограничен стенами, дверями и окнами, что позволяет использовать его внутри помещений для точного отслеживания. Это особенно полезно в ситуациях, когда требуется определить местоположение внутри здания. В отличие от сигналов Wi-Fi, которые могут быть нечеткими и проникать сквозь стены, ультразвук остается в пределах комнаты. Таким образом, при использовании ультразвука можно быть уверенным, что взаимодействующие излучатель и приемник находятся в пределах одного помещения, при условии, что препятствия действительно блокируют ультразвуковые сигналы.

Полезность информации о местоположении

В сценариях, где требуется найти определенный объект внутри здания, такой как сервисная тележка в гостинице или инвалидное кресло в больнице, знание комнаты, в которой находится объект, оказывается гораздо более полезным, чем точное расстояние до него от маяка.

Технические вызовы

Однако использование ультразвука для навигации внутри помещений также сталкивается с рядом технических препятствий. Свойство ультразвука, которое является его преимуществом при позиционировании на уровне комнаты и при охоте на летучих мышей, может также стать источником помех. В ограниченном пространстве ультразвук не может проникнуть сквозь препятствия, но может вызывать эхо и рассеиваться по площади, создавая шум. Для преодоления этой проблемы технологии требуется найти способ балансировки сигнала, обеспечивая высокую плотность сигнала для надежного приема, при этом блокируя шум от отраженных и рассеянных сигналов.

Выбор ультразвукового решения: преимущества и ожидания

Преимущества ультразвуковой навигации

В отличие от технологий, таких как Wi-Fi или Bluetooth с низким энергопотреблением (BLE), ультразвук может быть ограничен стенами, дверями и окнами, что позволяет использовать его внутри помещений для точного отслеживания. Это особенно полезно в ситуациях, когда требуется определить местоположение внутри здания. В отличие от сигналов Wi-Fi, которые могут быть нечеткими и проникать сквозь стены, ультразвук остается в пределах комнаты. Таким образом, при использовании ультразвука можно быть уверенным, что взаимодействующие излучатель и приемник находятся в пределах одного помещения, при условии, что препятствия действительно блокируют ультразвуковые сигналы.

Полезность информации о местоположении

В сценариях, где требуется найти определенный объект внутри здания, такой как сервисная тележка в гостинице или инвалидное кресло в больнице, знание комнаты, в которой находится объект, оказывается гораздо более полезным, чем точное расстояние до него от маяка.

Технические вызовы

Однако использование ультразвука для навигации внутри помещений также сталкивается с рядом технических препятствий. Свойство ультразвука, которое является его преимуществом при позиционировании на уровне комнаты и при охоте на летучих мышей, может также стать источником помех. В ограниченном пространстве ультразвук не может проникнуть сквозь препятствия, но может вызывать эхо и рассеиваться по площади, создавая шум. Для преодоления этой проблемы технологии требуется найти способ балансировки сигнала, обеспечивая высокую плотность сигнала для надежного приема, при этом блокируя шум от отраженных и рассеянных сигналов.

Подробнее ознакомиться с разными сферами применения навигации внутри зданий можно в разделе нашего сайта Отрасли и посмотреть видео на нашем youtube канале.

Navigation in the Tinkoff office

As part of a pilot project, the Indoors Navigation team implemented the geographic information system Indoors Navigation Platform (INP) at the Tinkoff office.

Платформа позволяет осуществлять навигацию в мобильном приложении с помощью позиционных датчиков, работающих по технологии iBeacon и дополненной реальности (AR), а без мобильного приложения — по QR кодам в браузере любого устройства.

Through the control panels, the administrator can monitor the movement of users in real time, open a heat map, view the history of office movements and route tracks. You can see the test result in the video clip, the positioning accuracy is about 2 meters.

We suggest you watch the story about indoor navigation of the Russia 1 channel in our blog on the link.

Smart buildings and their energy efficiency

В последнее время умные здания стали очень популярными по всему миру. Это такие здания, которые используют подключенные датчики и технологию Интернета вещей (IoT), чтобы стать более эффективными и удобными для жильцов и владельцев бизнеса. Специалисты прогнозируют, что рынок умных зданий будет расти почти на 25 процентов каждый год.

В 2022 году подключенные решения IoT продолжат стимулировать рост умных зданий, и поставщики таких зданий должны пересматривать свои бизнес-модели, чтобы использовать все преимущества этих технологий. Однако умные здания также имеют свои особенности, например, сложность проникновения сигнала в плотные материалы.

Поэтому важно иметь датчики с высокой энергоэффективностью и возможностью дальнего действия, чтобы они могли обнаруживать опасности, оптимизировать использование ресурсов и повышать удобство и безопасность жизни в зданиях. В целом, подключенные решения IoT продолжат повышать эффективность и удобство умных зданий, и это будет способствовать их дальнейшему росту и популярности.

Создание эффективных решений по управлению энергопотреблением

Стоимость электроэнергии быстро растет, а проблемы окружающей среды вызывают серьезные беспокойства. Из-за этого управляющие зданиями чувствуют все большее давление, чтобы они предлагали больше энергосберегающих решений на своих объектах. Например, теперь интеллектуальные термостаты с датчиками могут контролировать температуру воздуха в помещении и на улице, влажность и наличие людей в помещении.

Эти данные могут использоваться для управления системами внутри зданий, чтобы они могли охлаждать или обогревать помещения только при необходимости. Умные счетчики также позволяют более точно отслеживать потребление энергии в здании, а использование умных электрических розеток позволяет арендаторам обнаруживать устройства с высоким энергопотреблением и принимать меры для снижения потребления.

Устройства LoRa и протокол LoRaWAN упрощают внедрение простой и экономичной интеллектуальной системы управления энергопотреблением в зданиях. Устройства LoRa созданы для обеспечения надежной беспроводной связи на большие расстояния и могут соединять системы управления энергопотреблением с интеллектуальными термостатами, управлением освещением, умными розетками и другими энергосберегающими устройствами.

Профилактическое обслуживание

Профилактическое обслуживание — это когда предприятия регулярно проверяют своё оборудование, чтобы оно работало правильно и не выходило из строя. С помощью технологии подключенных датчиков можно получить более детальную информацию о состоянии оборудования в здании, такой как температура, мощность и звук.

Например, можно отслеживать работу вентиляторов в здании, которые работают круглосуточно. С помощью датчиков LoRa и модема можно определить состояние двигателя вентилятора и его положение, а также выявлять проблемы, когда они возникают. Таким образом, можно запланировать техническое обслуживание заранее и избежать серьезных проблем.

Энергоэффективные умные здания

Информация в реальном времени

Доступ к информации в режиме реального времени является одним из главных преимуществ умных зданий, так как это позволяет менеджерам принимать действенные решения, основанные на актуальных данных. Например:

  • Умные датчики в зданиях могут отслеживать различные проблемы, такие как пожар, качество воздуха и обнаружение опасных химических веществ, и сообщать об этом.
  • Данные о занятости, местоположении и посещаемости могут использоваться для оптимизации использования пространства и изменения планировки офисов и магазинов в режиме реального времени.
  • Бейджи для контроля доступа могут также предоставлять информацию о присутствии, что позволяет обнаруживать вторжения и несанкционированный доступ.

В 2022 году технология Интернета вещей (IoT) продолжает развиваться, и управляющие зданиями могут использовать ее возможности для повышения эффективности и экономии ресурсов.

Подробнее ознакомиться со сферами применения решений для умных зданий можно ознакомиться в разделе нашего сайта Отрасли и посмотреть видео на нашем youtube канале.

What is indoor positioning? Technology Overview

Позиционирование в помещениях — это технология, которая позволяет определить местоположение человека внутри здания или помещения с помощью различных сенсоров и систем. Эта технология может быть использована в различных областях, таких как магазины, аэропорты, госпитали, офисы и т.д. В этой статье мы рассмотрим, что такое позиционирование в помещениях и какие технологии помогают позволяют достигнуть в этом не плохих результатов.

Что такое позиционирование в помещениях? 

Позиционирование в помещениях — это технология, которая использует различные сенсоры, такие как WiFi, Bluetooth, GPS, RFID и другие, для определения местоположения человека внутри помещения. Система сенсоров обычно расположена в различных местах в помещении, и они работают вместе, чтобы определить точное местоположение человека.

Позиционирование в помещениях может использоваться для различных целей, таких как:

  • Управление и контроль доступа в зданиях
  • Улучшение опыта покупателя в магазинах
  • Оптимизация маршрутов внутри зданий
  • Управление запасами и мониторинг инвентаря в магазинах и складах
  • Управление персоналом в больницах, офисах и других организациях
  • Технологии позиционирования в помещениях

Существует несколько технологий, которые используются для позиционирования в помещениях 

Некоторые из них перечислены ниже:

1. WiFi позиционирование

WiFi позиционирование использует сигналы WiFi для определения местоположения человека внутри помещения. Система сенсоров обычно расположена в различных местах в помещении, и они работают вместе, чтобы определить точное местоположение человека.

2. Bluetooth позиционирование

Bluetooth позиционирование использует сигналы Bluetooth для определения местоположения человека внутри помещения. Технология может использоваться для определения местоположения устройств или смартфонов, что может быть полезно для созданияперсонализированного опыта для покупателей в магазинах.

3. RFID позиционирование

Кроме WiFi, Bluetooth и RFID позиционирования, существуют и другие технологии, которые используются для позиционирования в помещениях. Рассмотрим некоторые из них:

4. Инфракрасное позиционирование

Инфракрасное позиционирование использует инфракрасные лучи для определения местоположения человека в помещении. Система сенсоров обычно устанавливается на потолке или стенах и работает с помощью камеры, которая отслеживает движение человека.

5. Ультразвуковое позиционирование

Ультразвуковое позиционирование использует ультразвуковые волны для определения местоположения человека внутри помещения. Система сенсоров обычно устанавливается на потолке или стенах и работает с помощью специальных датчиков, которые отправляют и принимают ультразвуковые сигналы.

6. LiDAR позиционирование

LiDAR позиционирование использует лазерные лучи для определения местоположения человека внутри помещения. Система сенсоров обычно устанавливается на потолке или стенах и работает с помощью лазерных датчиков, которые отслеживают расстояние до объектов и могут создавать 3D-карты помещений.

7. Видео позиционирование

Видео позиционирование использует камеры для определения местоположения человека внутри помещения. Система сенсоров обычно устанавливается на потолке или стенах и работает с помощью камер, которые отслеживают движение человека и могут создавать 2D- или 3D-карты помещений.

Каждая из этих технологий имеет свои преимущества и недостатки, и выбор технологии зависит от конкретных требований и задач, которые необходимо решить. Однако, независимо от выбранной технологии, позиционирование в помещениях может значительно улучшить опыт пользователей и помочь организациям управлять своими ресурсами более эффективно.

А еще и Ultra-Wideband используется для позиционирования в помещениях. 

8. UWB позиционирование

Ultra-Wideband — это технология радиосвязи, которая использует очень широкий диапазон частот и короткие импульсы для передачи данных на короткие расстояния. UWB позиционирование в помещениях основано на использовании эффекта временной разницы приема сигналов между разными датчиками, которые устанавливаются внутри помещения. Система UWB позиционирования состоит из нескольких точек доступа, которые устанавливаются внутри помещения, и устройств, которые носят пользователи (например, смартфоны или бейджи). Каждая точка доступа генерирует короткий импульс UWB сигнала, который затем распространяется по всему помещению. Устройства, носящие пользователи, принимают сигналы от всех точек доступа и затем используют алгоритмы обработки сигнала, чтобы определить свое местоположение внутри помещения.

Одним из главных преимуществ UWB позиционирования является высокая точность и низкая плотность размещения оборудования. UWB-сигналы могут проходить сквозь легкие стены и другие объекты, что делает эту технологию более надежной в помещениях, где есть препятствия для других технологий позиционирования. Кроме того, UWB позиционирование может работать в режиме реального времени с максимально быстрым откликом, что позволяет использовать его в решениях, где необходимо мгновенно реагировать на изменения местоположения. Среди примеров применения UWB позиционирования в помещениях можно отметить управление инвентаризацией в розничной торговле, управление материальными ресурсами в гостиницах и офисах, мониторинг перемещения людей в аэропортах и других транспортных узлах. В целом, UWB позиционирование представляет собой эффективную технологию для точного и надежного определения местоположения внутри помещений и indoor-трекинга.

Выводы

Позиционирование в помещениях — это технология, которая позволяет определять местоположение объектов или людей внутри зданий и других закрытых пространств. Существует несколько технологий, которые используются для позиционирования в помещениях, таких как Wi-Fi, Bluetooth, RFID, инфракрасные датчики, UWB и другие.

Каждая из этих технологий имеет свои преимущества и недостатки, и выбор конкретной технологии зависит от многих факторов, таких как требуемая точность позиционирования, размер помещения, наличие препятствий и т.д. Также следует учитывать факторы, связанные с безопасностью, конфиденциальностью и совместимостью с существующей инфраструктурой.

Одним из главных преимуществ позиционирования в помещениях является возможность использования этой технологии для создания различных приложений, которые могут повысить эффективность и комфортность жизни людей. Например, такие приложения, как управление инвентаризацией, мониторинг перемещения людей и транспорта, системы безопасности и др., могут быть реализованы с помощью позиционирования в помещениях.

Однако следует отметить, что позиционирование в помещениях также имеет свои ограничения и проблемы, такие как необходимость установки дополнительного оборудования, сложности с определением местоположения в зданиях с множеством препятствий, необходимость поддержания высокой точности и т.д.

Тем не менее, в целом позиционирование в помещениях представляет собой важную технологию, которая может улучшить многие аспекты нашей жизни и бизнеса, и ее использование будет продолжать расширяться в будущем.

Подробнее о применении навигации в помещениях и indoor-позиционировании в разных сферах и индустриях можно узнать в разделе нашего сайта Отрасли

Передача о навигации в помещениях на ОТР

Канал «ОТР» выпустил передачу посвященную навигации в помещениях, в котором поучаствовала и наша команда, рассказав о разработанной компанией «Индорс Навигейшн» геоинформационной системе на основе цифрового двойника Indoors Navigation Platform и продемонстрировали ее возможности.

Репортеры сами испытали работу системы позиционирования в помещених, оценили все «плюсы» от ее внедрения и рассказали о предпосылках появления систем навигации. У журналистов получился интересный сюжет, а нам было приятно поработать и поделиться опытом с командой телевизионщиков.

Так же предлагаем вам посмотреть еще один репортаж о indoor навигации канала «Россия 1» в нашем блоге по the link.

Трилатерация и триангуляции для систем внутреннего позиционирования

Трилатерация в основном строится на мощности сигнала по аналогии с расстоянием до источника. Триангуляция основана на разнице во времени приема сигналов источника и определения угла под которым он приходит.

Отслеживание активов в помещении в данный момент очень актуально. Но говоря об отслеживании объектов в помещении в целом, важно иметь в виду, что оно состоит из разных типов технологий, каждая из которых может вычислять положение одним из двух методов: триангуляцией или трилатерацией. Эти два способа заметно отличаются друг от друга, хотя теоретически оба могут способствовать созданию единого решения для позиционирования внутри помещений.

Что такое трилатерация?

Трилатерация является более распространенным методом расчета положения. Трилатерация использует известное расстояние как минимум от трех фиксированных точек в двумерном пространстве или четырех фиксированных точек в трехмерном пространстве для расчета положения объекта. Трилатерация определяет точку положения находя пересечение ряда кругов (диаграмма Венна).

Что такое триангуляция?

Триангуляция — это метод вычисления положения, основанный на известном расстоянии между двумя измерительными приборами и определенных углах от этих двух точек до объекта. Это работает с использованием теоремы треугольника угол-сторона-угол для нахождения местоположения объекта.

Трилатерация

Триангуляция и трилатерация на практике

Для отслеживания активов в помещении трилатерация на данный момент гораздо более распространена. Большинство компаний использующих технологии Bluetooth используют трилатерацию из-за простоты ее реализации. Рассмотрим решение для отслеживания Bluetooth , все что нужно — это три обычных BLE маячка и метка принимающая от них сигнал (мобильное устройство). Когда метка начинает сообщать значения RSSI сигнала, эти значения можно преобразовать в расстояния и использовать для определения местоположения метки. Точностью примерно 3-4 метра, что является недостаточным во многих случиях, но относительно просто, так как используется обычное оборудование и требуется относительно простая математическая модель.

С другой стороны способ триангуляции немного усложнен. Требует знания не только местоположения маяков BLE, но и их пространственного вращения. Математическая модель незначительно сложнее, чем при трилатерация, но сами измерения значительно более чувствительны из-за того, как они определяюбтся. В то время как трилатерация зависит от уровня сигнала как от аналога расстояния, триангуляция зависит от временных различий в приеме сигналов меток. Поскольку эти сигналы распространяются со скоростью близкой у скорости света, разница во времени при передаче очень мала. Это делает измерительные приборы значительно более дорогими.

Сочетание триангуляции и трилатерации

Как бы сложно это ни было, триангуляция, скорее всего, со временем догонит трилатерацию, и в конце концов они будут использоваться совместно дополняя друг друга во многих приложениях для повышения точности навигации внутри помещений. Как уже упоминалось, трилатерация обеспечивает точность в 3-4 метра, а  триангуляция способна достичь точности до 1 метра. Их совокупность обладает высоким потенциалом для навигационных систем с более высокой точностью, особенно когда высокие затраты на решение задачи не являются проблемой и точность в приоритете.

Подробнее о работе решения на основе триангуляции и BLE описано на этой странице – AOA навигация.

Tracking employees in production using INP

Improving work efficiency by optimizing the working hours of employees and controlling their movement at a factory or other industrial facility is one of the most important tasks for any modern company thinking about digitalizing its business processes.

The geographic information system of the Indoors Navigation Platform allows you to create a digital twin of the enterprise in the shortest possible time and at minimal cost with maximum functionality. Tracking employees in production using INP is available in all types of industrial enterprises.

We tested the operation of our geoinformation system in a manufacturing facility with a large number of metal structures and were able to achieve positioning accuracy within half a meter, as seen in the video below.

You can always easily find more detailed information about projects related to indoor positioning and the activities of Indoors Navigation in our blog..

Репортаж о Индорс Навигейшн на Россия 1

На телеканале Россия 1 вышел небольшой сюжет о компании Индорс Навигейшн, в котором коротко рассказали о направлениях работы и системе indoor позиционирования Indoors Navigation Platform.

Больше информации о проектах и деятельности Индорс Навигейшн вы найдете в нашем blog..

High-precision positioning based on the angle of arrival of the signal. Angle of Arrival (AoA)

В 2021 году компания Индорс Навигейшн интегрировала в ГИС ситему Indoors Navigation Platform модуль, поддерживающий технологию определения положения объекта в помещении по углу прибытия Bluetooth сигнала — Angle of Arrival (AoA).

AoA решение основано на принципе измерения угловых направлений (азимут и высота) от устройства — локатора, размещенного в известном месте. Под углом прихода подразумевается угол, под которым сигнал встречается с приемником. Угол измеряется путем вычисления фазы принимаемых радиосигналов.

Локаторы Индорс Навигейшн используют запатентованные алгоритмы угловой оценки и расширенную обработку сигналов в своем механизме позиционирования. В результате решение на основе AoA обеспечивает позиционирование с точностью до 1 метра.

Технически решение AoA работает по протоколу Bluetooth 5.1 и пока еще поддерживается не многими мобильными устройствами, поэтому для BTC не сильно востребовано в данное время. Однако для BTB использование этого решения позволяет сэкономить на обслуживании навигационной инфраструктуры BLE датчиков (периодическая замена элементов питания) и увеличить точность. Монтаж и настройка инфраструктуры локаторов сложнее и дороже чем BLE маяков, так как требует подключения кабеля Ethernet (POE) и установки на потолок. 

Комбинированное программное обеспечение для позиционирования

Возможна комбинация обоих методов, поэтому для областей, где нет необходимости в позиционировании с точностью до метра, можно использовать менее дорогое оборудование. В областях, где необходимо такое очень точное позиционирование, используются локаторы.

В большинстве решений для отслеживания активов на уровне близости используется сочетание высокой точности позиционирования и низкой точности присутствия в разных областях.

RSSI против AoA

Оба термина обозначают методы расчета местоположения на основе технологии Bluetooth. В случае позиционирования на основе индикатора мощности принимаемого сигнала (RSSI) Beacon Tracker измеряет мощность сигнала, который постоянно передают метки активов — передатчики, которыми оснащены отслеживаемые активы. Простая для понимания картина – это волны, которые «излучает» брошенный в воду камень и которые ослабевают с увеличением расстояния. Такой тип определения местоположения посредством измерения расстояния на основе уровней сигнала называется латерацией, а используемый здесь эффект уменьшения уровня сигнала называется затуханием.

Расчет положения на основе угла прибытия (AoA) представляет собой сетецентрическую архитектуру, основанную на угловой оценке. В отличие от латерации, устройство Bluetooth может сделать свое местоположение доступным, передавая пакеты с поддержкой пеленгации с использованием одной антенны. Затем радиосигнал принимается многоантенным устройством, известным как локатор. Для двумерной идентификации положения необходимы два угла, вычисленные с помощью локатора. Для трехмерной идентификации положение вычисляется путем триангуляции как минимум по двум локаторам.

Однако для создания необходимой инфраструктуры для приемника требуется больше усилий, чем для инфраструктуры, предназначенной для RSSI. Этот метод в настоящее время не подходит для мобильной навигации внутри помещений.

Примеры использования позиционирования по углу прибытия

Высокоточное отслеживание активов используется в логистике и здравоохранении. Он позволяет быстро и надежно определять местонахождение инструментов, медицинских приборов и производственного оборудования, а также мелких деталей. В то же время AoA-Tracking также позволяет безопасно идентифицировать близко расположенные активы, чтобы можно было надежно и точно отслеживать крупные детали в узких местах.

  • Отслеживание с точностью до сантиметра
  • Отслеживание активов любого размера, которые находятся близко друг к другу

Отслеживание активов в производственных цехах

Например, производитель авиационных двигателей хочет идентифицировать и отслеживать положение незавершенных двигателей в своем производственном цеху. Хотя двигатели очень большие, их нельзя надежно отследить с помощью метода на основе RSSI, потому что позиционирование слишком неточное, чтобы идентифицировать большие объекты, хранящиеся рядом друг с другом. Позиционирование AoA достаточно точное, чтобы иметь возможность различать объекты даже в ограниченном пространстве и надежно идентифицировать требуемую заготовку.

Отслеживание активов в больницах

В больнице тысячи единиц оборудования должны быть надежно доступны и легко доступны. Особенно в тех случаях, когда большую роль играет нехватка времени, важно не только получить приблизительное местоположение, например определенное место хранения, но и иметь точную информацию о том, где на самом деле находится искомый предмет.

Высокоточное отслеживание людей

Для сотрудников, работающих в одиночку, высокоточное отслеживание является особым фактором безопасности, особенно в критических ситуациях в сложных условиях. Например, когда один рабочий попадает в аварию на нефтехимическом заводе. В экстренных случаях помощь можно отправить непосредственно человеку, а не только в соответствующий отдел.

Вас интересует решение для высокоточного позиционирования с AoA-позиционированием?

Возможности отслеживания с использованием технологии угла прибытия сигнала увеличиваются с каждым годом по мере развития решений и технологического прогресса. Несмотря на то, что отслеживание AoA подходит практически для любой области, успешная реализация проекта всегда зависит от выбора подхода и расположения оборудования — ведь каждый случай индивидуален и должен учитывать специфику помещений. Индорс Навигейшн обладает большим опытом в данной сфере.

Если вы уже планируете конкретный проект внутренней навигации или просто хотите сформулировать свои задачи, мы вас с удовольствием проконсультируем. Вместе мы обязательно найдем лучшее навигационное решение для вашего предприятия!

Более подробную информацию о технологии можно найти на нашем on the website.

#secondary

Обращение успешно отправлено!